Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T08:08:52.215Z Has data issue: false hasContentIssue false

Semiclassical study of the muon transfer process between hydrogen isotopes in strong electromagnetic fields

Published online by Cambridge University Press:  09 March 2009

Z. Henis
Affiliation:
Plasma Physics Department, Soreq Nuclear Research Center, Yavneh 70600, Israel
S. Eliezer
Affiliation:
Plasma Physics Department, Soreq Nuclear Research Center, Yavneh 70600, Israel

Abstract

The possibility of enhancement of the muon transfer process between hydrogen isotopes in the field of an intense electromagnetic wave is discussed. The muon transfer cross section between the ground states of deuterium and tritium under laser irradiation is calculated from a semiclassical model. It is shown in this case that the muon transfer cross section is hardly affected, even at the very large laser intensities of the order of 1016 W/cm2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogdanova, L. N. 1981 Sov. J. Nucl. Phys. 34, 662.Google Scholar
Bracci, L. & Fiorentini, G. 1982a Nature 297, 134.CrossRefGoogle Scholar
Bracci, L. & Fiorentini, G. 1982b Phys. Rep. 86, 169.Google Scholar
Breuniich, W. H. et al. 1987 Phys. Rev. Lett. 58, 329.CrossRefGoogle Scholar
Breunlich, W. H. et al. 1989 Annu. Rev. Nucl. Sci. 39, 311.CrossRefGoogle Scholar
Eliezer, S. 1988 Laser Part. Beams 6, 63.CrossRefGoogle Scholar
Eliezer, S. & Henis, Z. 1989 Laser Part. Beams 7, 345.Google Scholar
Gershtein, S. S. & Ponomarev, L. I. 1975 In Muon Physics, Hughes, W. W. & Wu, C. S. eds. (Academic, New York), Vol. III, p. 141.CrossRefGoogle Scholar
Henis, Z. & Eliezer, S. 1990 Phys. Rev. A. 41, 5820.CrossRefGoogle Scholar
Jones, S. 1986 Phys. Rev. Lett. 56, 588.CrossRefGoogle Scholar
Kamimura, M. 1988 Muon Catal. Fusion 2, 335.Google Scholar
Kobayashi, K., Ishihara, T. & Toshima, N. 1988 Muon Catal. Fusion 2, 1.Google Scholar
Kulsrud, R. M. 1989 In Muon Catalyzed Fusion, Jones, S., Rafelski, J. & Monkhorst, J. eds. (American Institute of Physics, New York).Google Scholar
Matveenko, A. V. & Ponomarev, L. I. 1971 Sov. Phys. JETP 32, 871.Google Scholar
Melezhik, V. S. 1988 Muon Catal. Fusion 2, 117.Google Scholar
Menshikov, L. I. & Ponomarev, L. I. 1984 JETP Lett. 39, 663.Google Scholar
Menshikov, L. I. & Ponomarev, L. I. 1986 Z. Phys. D. 2, 1.Google Scholar
Ohsaki, A., Nakamura, H. & Baer, M. 1988 Phys. Rev. A 38, 2798.Google Scholar
Ohsaki, A. et al. 1987 Muon Catal. Fusion 1, 245.Google Scholar
Rafelski, J. 1979 In Exotic Atoms, Crowe, K. & Duclos, E. eds. (Plenum, New York), p. 177.Google Scholar
Rapp, D. 1970 Quantum Mechanics (Holt, Rinehart and Winston, New York).Google Scholar
Rapp, D. & Francis, N. E. 1962 J. Chem. Phys. 37, 2631.Google Scholar
Tajima, T., Eliezer, S. & Kulsrud, R. M. 1989 In Muon Catalzyed Fusion, Jones, S., Rafelski, J. & Monkhorst, J. eds. (American Institute of Physics, New York), p. 423.Google Scholar
Takahashi, H. 1986 Fusion Technol. 9, 328.CrossRefGoogle Scholar
Takahashi, H. & Moats, A. 1983 Atomkerenergie 43, 188.Google Scholar