Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T04:36:04.492Z Has data issue: false hasContentIssue false

Nanosecond air breakdown parameters for electron and microwave beam propagation

Published online by Cambridge University Press:  09 March 2009

A. W. Ali
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000

Abstract

Air breakdown by avalanche ionization plays an important role in the electron beam and microwave propagations. For high electric fields and short pulse applications one needs avalanche ionization parameters for modeling and scaling of experimental devices. However, the breakdown parameters, i.e., the ionization frequency vs E/p (volt. cm−1. Torr−1) in air is uncertain for very high values of E/P. We review the experimental data for the electron drift velocity, the Townsend ionization coefficient in N2 and O2 and develop the ionization frequency and the collision frequency for momentum transfer in air. We construct the E/p vs Pτ diagram and show that our results are in better agreement with the most recent short pulse air breakdown experiments, compared to those predicted by the expression of Felsenthal & Proud (1965). This is because they extrapolate an expression for the drift velocity, linear in E/p, to high values of E/p. Experimentally the drift velocity varies as (E/p)½ in the region of E/p > 100.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A. W. 1984The Electron Momentum Transfer Cross Sections in N2 and O2” NRL Memorandum Report 5421, Washington, D.C.Google Scholar
Bollen, W. M., Yee, C. L.Ali, A. W., Nagurney, J. M. & Read, M. E. 1983 J. Appl. Phys., 54, 101.CrossRefGoogle Scholar
Brown, S. C. 1956 in “Encyclopedia of Physics,” Flugge, S., ed., Vol. 22, 531 (Springer-Verlag, Berlin).Google Scholar
Brown, S. C., 1967Basic Data of Plasma Physics,” 2nd ed., rev., (The MIT Press, Cambridge).Google Scholar
Byrne, D. P., Alvarez, R. A. & Johnson, R. M. 1983Air-Breakdown Limits for Microwave-Pulse Propagation. Part I. Experiments” Lawrence Livermore National Laboratory Report UCID-19877-PT.1.Google Scholar
Cartwright, D. C. 1978 J. Appl. Phys., 49, 3855.CrossRefGoogle Scholar
Crompton, R. W., Huxley, L. G. H. & Sutton, D. J. 1953 Proc. Roy. Soc. London A 218 507.Google Scholar
Didenko, A. N., Novikov, S. A., Razin, S. V., Chumerin, P. Y. & Yushkov, Y. G., 1985 Sov. J. Communications Tech. and Electronics No. 4, 731.Google Scholar
Dutton, J. 1975 J. Phys. Chem. Ref. Data, 4, 577.CrossRefGoogle Scholar
Engelhardt, A. G., Phelps, A. V. & Risk, C. G. 1964 Phys. Rev. 135, A1566.CrossRefGoogle Scholar
Felsenthal, P. & Proud, J. M. 1965 Phys. Rev. 139, A1796.Google Scholar
Felsenthal, P. 1966 J. Appl. Phys., 37, 4557.CrossRefGoogle Scholar
Gallaher, J. W., Beaty, E. C., Dutton, J. & Pitchford, L. C. 1982 JILA Information Center Report # 22, University of Colorado, Boulder, CO.Google Scholar
Gould, L. & Roberts, L. W. 1956 J. Appl. Phys., 27, 1162.CrossRefGoogle Scholar
Hake, R. D. Jr. & Phelps, A. V. 1967 Phys. Rev., 158, 70.CrossRefGoogle Scholar
Herlin, M. A. & Brown, S. C. 1948 Phys. Rev. 74 291, 910, 1650.Google Scholar
Itikawa, Y. 1971 Planet Space Sci, 19, 993.Google Scholar
Jain, A., Freitas, L. C. G., Mu-Tao, L. & Tayal, S. S. 1984 J. Phys. B 17, 29.Google Scholar
Lakshminrasimha, C. S. & Lucas, J. 1977 J. Phys. D 10, 313.Google Scholar
MacDonald, A. D. 1966Microwave Breakdown in Gases,” (Wiley, New York).Google Scholar
Maller, V. N. & Naidu, M. S. 1976 Indian J. Pure, Appl. Phys., 14, 733.Google Scholar
Moruzzi, J. L. & Price, D. A. 1974 J. Phys. D 7, 1434.Google Scholar
Pack, J. L. & Phelps, A. V. J. 1966 Chem Phys., 44, 1870.Google Scholar
Phelps, A. V. 1972 Chapter 21 in Defense Nuclear Agency Reaction Rate Handbook, 2nd Ed.Bortner, & Baurer, , eds. DNA, 1948H, (DASIAC, DoD Nuclear Information and Analysis Center, General Electric, Tempo, Santa Barbara, CA).Google Scholar
Raja Rao, C. & Govinda Raju, G. R. 1971 J. Phys. D, 4, 494.CrossRefGoogle Scholar
Rapp, D. & Englander-Golden, P. 1965 J. Chem. Phys., 43, 1464.Google Scholar
Rose, D. J. & Clark, M. Jr., 1961Plasmas and Controlled Fusion,” (MIT Press, Cambridge, MA).Google Scholar
Schlumbohm, H. Z. 1965 Z. Physik, 182, 317.CrossRefGoogle Scholar
Shkarofsky, I. P. 1961 Can. J. Phys., 39, 1619.CrossRefGoogle Scholar
Schrafman, W. E., Taylor, W. C. & Morita, T. 1964 IEEE Trans. Antenna and Prop., 12, 709.CrossRefGoogle Scholar
Shyn, T. W., Stolarski, R. S. & Carignan, R. G. 1972 Phys. Rev. A 6, 1002.CrossRefGoogle Scholar
Shyn, T. W. & Carignan, G. R. 1980 Phys. Rev. A, 22, 923.CrossRefGoogle Scholar
Shyn, T. W. & Sharp, W. E. 1982 Phys. Rev. A 26, 1369.Google Scholar
Slinker, S. & Ali, A. W. 1982Electron Excitation and Ionization Rate Coefficients for N2, O2, NO, N and O,” NRL Memorandum Report 4756, Washington, D.C.CrossRefGoogle Scholar
Slinker, S. & Ali, A. W. 1985Electron Momentum Transfer Collision Frequency in N2, O2 and Air,” NRL Memo Report 5614, Washington, D.C.Google Scholar
Srivastava, S. K., Chutjian, A. & Trajmar, S. 1976 J. Chem. Phys., 64, 1340.CrossRefGoogle Scholar
Tetenbaum, S. J., MacDonald, A. D. & Bandel, H. W. 1971 J. Appl. Phys., 42, 5871.CrossRefGoogle Scholar
Wedde, T. & Strand, T. G. 1974 J. Phys. B, 7, 1091.Google Scholar
Whitmer, R. F. & Herrmann, G. F. 1966 Phys. Fluids, 9, 768.CrossRefGoogle Scholar
Yee, C. L., Ali, A. W. & Bollen, W. M. 1983 J. Appl. Phys., 54, 1278.Google Scholar