Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:08:02.821Z Has data issue: false hasContentIssue false

Excitation of large amplitude electron plasma waves by laser

Published online by Cambridge University Press:  09 March 2009

P. Mulser
Affiliation:
Institut für Angewandte Physik, Technische Hochschule Darmstadt, D-6100 Darmstadt, W. Germany
H. Schnabl
Affiliation:
Institut für Angewandte Physik, Technische Hochschule Darmstadt, D-6100 Darmstadt, W. Germany

Abstract

A hydrodynamic description is used to derive a nonlinear wave equation in the geometry of the capacitor model. For a streaming cold plasma the equation can be solved analytically. For the warm plasma case numerical results of high amplitude waves and wave breaking are presented. Flat minima and peaked maxima of the electron density and the oscillatory velocity are the most characteristic features of highly nonlinear electron waves. Their Bohm–Gross dispersion relation is modified by self-interaction of the fundamental mode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cairns, R. A. & Sanderson, J. J. 1980 Laser-Plasma-Interactions, Proceedings of the Twentieth Scottish Universities Summer School in Physics, St. Andrews.Google Scholar
Carmen, R. L., Forslund, D. W. & Kindel, J. M. 1981 Phys. Rev. Letts. 46 29.CrossRefGoogle Scholar
Coffey, T. P. 1971 Phys. Fluids 14, 1402.CrossRefGoogle Scholar
Dawson, J. M. 1959 Phys. Rev. Letts. 113 383.CrossRefGoogle Scholar
Denisov, N. G. 1957 Soviet Phys. JETP 4, 544.Google Scholar
Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L. & MOrse, R. L. 1975 Phys. Rev. A 11, 679.CrossRefGoogle Scholar
Ginzburg, V. L. 1964 The Propagation of Electromagnetic Waves in Plasmas, Oxford, p. 213250.Google Scholar
Hora, H., Pfirsch, D. & Schlüter, A. 1967 Z. Naturforsch. 22a, 278.CrossRefGoogle Scholar
Koch, P. & Albritton, J. 1974 Phys.Rev. Letts. 32 1420.CrossRefGoogle Scholar
Kull, H. J. 1981, Linear Mode Conversion in Laser Plasmas, Garching Rep. MPQ 50; accepted for publ. in Phys. Fluids.Google Scholar
Kruer, W. 1979 Phys. Fluids 22, 1111.CrossRefGoogle Scholar
Maaswinkel, A. G. M. 1980 Z. Naturforsch. 35a, 1165.Google Scholar
Mulser, P. 1980, Topological Aspects of Fluid Flow and Hydrodynamic Wave Breaking, Garching Rep. PLF 28.Google Scholar
Mulser, P. & Mima, K. 1980, The Effect of Motion on Hydrodynamic Wave Breaking in Resonance Absorption, Garching Rep. PLF 29.Google Scholar
Mulser, P., Takabe, H. & Mima, K. 1982 Z. Naturforsch. 37a, 208.CrossRefGoogle Scholar
Mulser, P. & Van Kessel, C. 1978 J. Phys. D: Appl. Phys. 11 1085.CrossRefGoogle Scholar
Nishikawa, K., 1968, J. Phys. Soc. Jap. 24, 916, 1152.CrossRefGoogle Scholar
Piliya, A. D. 1966 Sov. Phys. Tech. Phys. 11 609.Google Scholar
Speziale, TH. & Catto, P. J. 1979 Phys. Fluids 22, 681.CrossRefGoogle Scholar
Whitham, G. B. 1974, Linear and Nonlinear Waves, John Wiley, New York, p. 488.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Acad. Press, N. Y., p. 71.Google Scholar