Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T08:22:26.226Z Has data issue: false hasContentIssue false

Enhanced efficiency of femtosecond laser-driven proton generation from a two-species target with heavy atoms

Published online by Cambridge University Press:  08 April 2016

J. Domański*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
S. Jabłoński
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
*
Address correspondence and reprint requests to: J. Domański, Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland. E-mail: [email protected]

Abstract

Using two-dimensional particle-in-cell simulations, the properties of a proton beam generated from a thin erbium hydride target irradiated by a 25 fs laser pulse of intensity ranging from 1020 to 1021 W/cm2 are investigated and compared with the features of a proton beam produced from a hydrocarbon (CH) target. It is shown that in case of using the hydride target the mean proton energy and the number of high-energy (>10 MeV) protons as well as the peak proton pulse intensity can be higher by a factor ~10 than the ones obtained from the CH target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev. 15, 1.Google Scholar
Badziak, J. & Jabłoński, S. (2010). Ultraintense ion beams driven by a short-wavelength short-pulse laser. Phys. Plasmas 17, 073106.Google Scholar
Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J. & Mancic, A. (2008). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 104, 063310.CrossRefGoogle Scholar
Badziak, J., Jabłoński, S., Pisarczyk, T., Rączka, P., Krousky, E., Liska, R., Kucharik, M., Chodukowski, T., Kalinowska, Z., Parys, P., Rosiński, M., Borodziuk, S. & Ullschmied, J. (2012). Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 19, 053105.Google Scholar
Badziak, J., Mishra, G., Gupta, N.K. & Holkundkar, A.R. (2011). Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications. Phys. Plasmas 18, 053108.Google Scholar
Badziak, J., Parys, P., Rosiński, M., Krousky, E., Ullschmied, J. & Torrisi, L. (2013). Improved generation of ion fluxes by a long laser pulse using laser-induced cavity pressure acceleration. Appl. Phys. Lett. 103, 124104.Google Scholar
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.Google Scholar
Bulanov, S.V., Esirkepov, T.Zh., Khoroshkov, V.S., Kuznetsov, A.V. & Pegoraro, F. (2002). Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240.CrossRefGoogle Scholar
Cui, Y.-Q., Wang, W.-M., Sheng, Z.-M., Li, Y.-T. & Zhang, J. (2013). Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers. Phys. Plasmas 20, 024502.Google Scholar
Danson, C., Hillier, D., Hopps, N. & Neely, D. (2015). Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3, e3.CrossRefGoogle Scholar
Davis, J. & Petrov, G.M. (2009). Generation of GeV ion bunches from high-intensity laser-target interactions. Phys. Plasmas 16, 023105.Google Scholar
Denavit, J. (1992). Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052.CrossRefGoogle ScholarPubMed
Domański, J., Badziak, J. & Jabłoński, S. (2014). Particle-in-cell simulation of acceleration of ions to GeV energies in the interactions of an ultra-intense laser pulse with two-species targets. Phys. Scr. T161, 014030.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Fernandez, J.C., Albright, B.J., Beg, F.N., Foord, M.E., Hegelich, B.M., Honrubia, J.J., Roth, M., Stephens, R.B. & Yin, L. (2014). Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 54, 054006.Google Scholar
Foord, M.E., Mackinnon, A.J., Patel, P.K., MacPhee, A.G., Ping, Y., Tabak, M. & Town, R.P.J. (2008). Enhanced proton production from hydride-coated foils. J. Appl. Phys 103, 056106.CrossRefGoogle Scholar
Ledingham, K.W.D. & Galster, W. (2010). Laser-driven particle and photon beams and some applications. New. J. Phys. 12, 045005.Google Scholar
Lichters, R., Pfund, R.E.W. & Meyer-Ter-Vehn, J. (1997). LPIC++: A parallel one-dimensional relativistic electromagnetic particle-cell-code for simulating laser-plasma-interactions. Report MPQ 225. Germany, Garching: Max-Planck-Institut für Quantenoptik. (the code is available at http://www.lichters.net/download.html).Google Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Control. Fusion 50, 124033.CrossRefGoogle Scholar
Liu, T.-C., Shao, X., Liu, C.-S., He, M., Eloasson, B., Tripathi, V., Su, J.-J., Wang, J. & Chen, S.-H. (2013). Generation of quasi-monoenergetic protos from thin multi-ion foils by a combination of laser radiation pressure acceleration and shielded Coulomb repulsion. New J. Phys. 15, 025026.CrossRefGoogle Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornalti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003.CrossRefGoogle ScholarPubMed
Patel, P.K., MacKinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton. Phys. Rev. Lett. 91, 125004.Google Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foil with circular polarized laser pulse. New J. Phys. 10, 013021.Google Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nat. Phys. 3, 58.Google Scholar
Silva, L.O., Marti, M., Davies, J.R. & Fonseca, R.A. (2004). Proton shock acceleration in laser–plasma interactions. Phys. Rev. Lett. 92, 015002.Google Scholar
Torrisi, L., Gamino, S., Mezzasalma, A.M., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K. & Boody, F.P. (2003). Implantation of ions produced by the use of high power iodine laser. Appl. Surf. Sci. 217, 319.Google Scholar
Weng, S.M., Murakami, M. & Sheng, Z.M. (2015). Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets. Laser Part. Beams 33, 103107. doi: 10.1017/S026303461400069X.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M., Browers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298. doi: 10.1017/S0263034606060459.Google Scholar