Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:45:18.569Z Has data issue: false hasContentIssue false

Cryogenic systems for inertial fusion energy

Published online by Cambridge University Press:  18 September 2008

D. Chatain*
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
J.P. Périn
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
P. Bonnay
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
E. Bouleau
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
M. Chichoux
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
D. Communal
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
J. Manzagol
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
F. Viargues
Affiliation:
C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, Grenoble Cédex, France
D. Brisset
Affiliation:
CEA/CESTA, Département des Lasers de Puissance/SEM, Le Barp, France
V. Lamaison
Affiliation:
CEA/CESTA, Département des Lasers de Puissance/SEM, Le Barp, France
G. Paquignon
Affiliation:
CEA/CESTA, Département des Lasers de Puissance/SEM, Le Barp, France
*
Address correspondence and reprint requests to: D. Chatain, C.E.A. Grenoble, Département de Recherche Fondamentale sur la Matière Condensée/SBT, 17, rue des Martyrs, 38054 Grenoble Cédex 9, France. E-mail: [email protected]

Abstract

The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo compressor for the targets filling, the target positioner and the thermal shroud remover.

The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based on the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase.

Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baclet, P., Bednarczyk, S., Botrel, R., Bourcier, H., Breton, O., Collier, R., Fleury, E., Legaie, O., Schunk, J., Perin, J.P., Reneaume, B. & Theoblad, M. (2004). The LMJ cryogenic target assembly: Functions and fabrication. Fusion Sci. Technol. 45, 276281.CrossRefGoogle Scholar
Besnard, D.. (2007). The megajoule laser program: Ignition at hand. Eur. Phys. J. D 44, 207213.Google Scholar
Dunne, M. (2006). HiPER: A laser fusion facility for Europe. http://www.hiperlaser.org/docs/technical/HiPERoverview.pdf.Google Scholar
Goodin, D.T., Alexander, N.B., Brown, L.C., Callahan, D.A., Ebey, P., Frey, D.T., Gallix, R., Geller, D., Gibson, C.R., Hoffer, J., Maxwell, J.L., McQuillan, B.W., Nikroo, A., Nobile, A., Olson, C., Petzoldt, R.W., Raffray, R., Rickman, W.W., Rochau, G., Schroen, D.G., Sethian, J., Shelika, J., Streit, J.E., Tillack, M., Vermillion, B.A. & Valmianski, E.I. (2005). Demonstrating a target supply for inertial fusion energy. Fusion Sci. Technol. 47, 11311138.CrossRefGoogle Scholar
Harding, D., Elasky, L., Sailer, J. & Wittman, M. (2002). Cryogenic layering experiments on OMEGA. http://www-ferp.ucsd.edu/HAPL/MEETINGS/0212-HAPL/harding.pdf.Google Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.Google Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Paquignon, G., Brisset, D., Lamaison, V., Manzagol, J., Chatain, D., Bonnay, P., Bouleau, E. & Périn, J.P. (2005). Cryogenic transfer between two cryorobots for the laser megajoule facility. DOI: 10.1063/1.2202415.Google Scholar
Sangster, T.C., McCrory, R.L., Goncharov, V.N., Hardin, D.R., Loucks, S.J., McKenty, P.W., Meyerhofer, D.D., Skupsky, S., Yaakobi, B., MacGowan, B.J., Atherton, L.J., Hammel, B.A., Lindl, J.D., Moses, E.I., Porter, J.L., Cuneo, M.E., Matzen, M.K., Barnes, C.W., Fernandez, J.C., Wilson, D.C., Kilkenny, J.D., Bernat, T.P., Nikroo, A., Logan, B.G., Yu, S., Petrasso, R.D., Sethian, J.D. & Obenschain, S. (2007). Overview of inertial fusion research in the United States. Nucl. Fusion 47, S686S695.CrossRefGoogle Scholar