Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T14:56:11.706Z Has data issue: false hasContentIssue false

Bubble structure in laser wake-field acceleration

Published online by Cambridge University Press:  11 February 2016

Ershad Sadeghi Toosi
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Saeed Mirzanejhad*
Affiliation:
Department of Atomic and Molecular Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
Davoud Dorranian
Affiliation:
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*
Address correspondence and reprint requests to: Saeed Mirzanejhad, Department of Atomic and Molecular Physics, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran. E-mail: [email protected]

Abstract

Highly nonlinear ellipsoid bubble regime of the laser wake-field acceleration with high-intensity laser pulse is considered with analytical and numerical calculations. The important property of this regime is the production of the mono-energetic high-quality electron beam. We introduce a new twofold ellipsoid structure of the bubble (egg shape) by referring to some published two-dimensional (2D) and 3D simulations. In this paper, a new analytical formalism is introduced, in which dimensions of the front part of the ellipsoid bubble are related to the laser pulse and plasma parameters. These relationships are in agreement with 2D particle-in-cell code results in recent work (Benedetti et al., 2013).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banerjee, S., Powers, N.D., Ramanathan, V., Ghebregziabher, I., Brown, K.J., Maharjan, C.M., Chen, S., Beck, A., Lefebvre, E., Kalmykov, S.Y., Shadwick, B.A. & Umstadter, D.P. (2012). Generation of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regime. Phys. Plasmas 19, 056703.Google Scholar
Benedetti, C., Schroeder, C.B., Esarey, E., Rossi, F. & Leemans, W.P. (2013). Numerical investigation of electron self-injection in the nonlinear bubble regime. Phys. Plasmas 20, 103108.Google Scholar
Bonabi, R.S., Navid, H.A. & Zobdeh, P. (2009). Observation of quasi-mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beam 27, 223231.Google Scholar
Cowan, B.M., Kalmykov, S.Y., Beck, A., Davoine, X., Bunkers, K., Lifshitz, A.F., Lefebvre, E., Bruhwiler, D.L., Shadwick, B.A. & Umstadter, D.P. (2012). Computationally efficient methods for modeling laser wakefield acceleration in the blowout regime. J. Plasma Phys. 78, 469482.Google Scholar
Geissler, M., Schreiber, J. & Meyer-Ter-vehn, J. (2006). Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Kalmykov, S., Yi, S.A., Khudik, V. & Shvets, G. (2009). Electron self-injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 103, 135004.Google Scholar
Kalmykov, S.Y., Beck, A., Davoine, X., Lefebvre, E. & Shadwick, B.A. (2012). Laser plasma acceleration with a negatively chirped pulse: All-optical control over dark current in the blowout regime. New J. Phys. 14, 033025.Google Scholar
Kalmykov, S.Y., Beck, A., Yi, S.A., Khudik, V.N., Downer, M.C., Lefebvre, E., Shadwick, B.A. & Umstadter, D.P. (2011). Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime. Phys. Plasmas 18, 056704.Google Scholar
Kiselev, S., Pukhov, A. & Kostyukov, I. (2004). X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 93, 135004.CrossRefGoogle ScholarPubMed
Kostyukova, I., Pukhov, A. & Kiselev, S. (2004). Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 5256.Google Scholar
Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A. & Silva, L.O. (2007). Generating multi-GeV electron bunches using single stage laser wakefield accelerationin a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10, 061301.CrossRefGoogle Scholar
Pukhov, A. & Gordienko, S. (2006). Bubble regime of wake field acceleration: Similarity theory and optimal scaling. Phil. Trans. R. Soc. A 364, 623633.Google Scholar
Pukhov, A. & Meyer-Ter-vehn, J. (2002). Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.Google Scholar
Rousse, A., Phuoc, K.T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.P., Umstadter, D. & Hulin, D. (2004). Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005.Google Scholar
Thomas, J., Pukhov, A. & Kostyukov, I.Y. (2014). Temporal and spatial expansion of a multi-dimensional model for electron acceleration in the bubble regime. Laser Part. Beam 32, 277284.Google Scholar
Wu, H.C., Xie, B.S., Liu, M.P., Hong, X.R., Zhang, S. & Yu, M.Y. (2009). Electron trajectories and betatron oscillation in the wake bubblein laser-plasma interaction. Phys. Plasmas 16, 073108.CrossRefGoogle Scholar
Xie, B.S., Wu, H.C., Wand, H., Wang, N.Y. & Yu, M.Y. (2007). Analysis of the electromagnetic fields and electron acceleration in the bubble regime of the laser-plasma interaction. Phys. Plasmas 14, 073103.Google Scholar
Zobdeh, P., Bonabi, R.S. & Afarideh, H. (2009). Cavity generation and quasi-monoenergetic electron generation in laser–plasma interaction. Phys. Part. Nucl. Lett. 6, 413416.Google Scholar