Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:57:11.996Z Has data issue: false hasContentIssue false

Astrophysical radiative shocks: From modeling to laboratory experiments

Published online by Cambridge University Press:  28 November 2006

MATTHIAS GONZÁLEZ
Affiliation:
DSM/DAPNIA/Service d'Astrophysique, CEA-Saclay, Gif-sur-Yvette, France
CHANTAL STEHLÉ
Affiliation:
LUTH, UMR811 du CNRS, Observatoire de Paris, Meudon, France
EDOUARD AUDIT
Affiliation:
DSM/DAPNIA/Service d'Astrophysique, CEA-Saclay, Gif-sur-Yvette, France
MICHEL BUSQUET
Affiliation:
LUTH, UMR811 du CNRS, Observatoire de Paris, Meudon, France ARTEP Inc., Columbia, Maryland
BEDRICH RUS
Affiliation:
Institute of Physics, PALS Center, Prague
FRÉDÉRIC THAIS
Affiliation:
DSM/DAPNIA/Service d'Astrophysique, CEA-Saclay, Gif-sur-Yvette, France DSM/DRECAM/SPAM, CEA-Saclay, Gif-sur-Yvette, France
OUALI ACEF
Affiliation:
LUTH, UMR811 du CNRS, Observatoire de Paris, Meudon, France
PATRICE BARROSO
Affiliation:
GEPI, UMR 8111 du CNRS, Observatoire de Paris, Meudon, France
ABRAHAM BAR-SHALOM
Affiliation:
ARTEP Inc., Columbia, Maryland
DANIEL BAUDUIN
Affiliation:
GEPI, UMR 8111 du CNRS, Observatoire de Paris, Meudon, France
MICHAELA KOZLOVÀ
Affiliation:
Institute of Physics, PALS Center, Prague
THIBAUT LERY
Affiliation:
DIAS, Dublin, Ireland
ALI MADOURI
Affiliation:
LPN UPR20, Marcoussis, France
TOMAS MOCEK
Affiliation:
Institute of Physics, PALS Center, Prague
JIRI POLAN
Affiliation:
Institute of Physics, PALS Center, Prague

Abstract

Radiative shock waves are observed around astronomical objects in a wide variety of environments, for example, they herald the birth of stars and sometimes their death. Such shocks can also be created in the laboratory, for example, by using energetic lasers. In the astronomical case, each observation is unique and almost fixed in time, while shocks produced in the laboratory and by numerical simulations can be reproduced, and investigated in greater detail. The combined study of experimental and computational results, as presented here, becomes a unique and powerful probe to understanding radiative shock physics. Here we show the first experiment on radiative shock performed at the PALS laser facility. The shock is driven by a piston made from plastic and gold in a cell filled with xenon at 0.2 bar. During the first 40 ns of the experiment, we have traced the radiative precursor velocity, that is showing a strong decrease at that stage. Three-dimensional (3D) numerical simulations, including state-of-art opacities, seem to indicate that the slowing down of the precursor is consistent with a radiative loss, induced by a transmission coefficient of about 60% at the walls of the cell. We infer that such 3D radiative effects are governed by the lateral extension of the shock wave, by the value of the opacity, and by the reflection on the walls. Further investigations will be required to quantify the relative importance of each component on the shock properties.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bar-Shalom, A., Oreg, J., Goldstein, W.H., Schvarts, D. & Zigler, A. (1989). Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A 40, 3183.CrossRefGoogle Scholar
Bar-Shalom, A., Oreg, J., Seely, J.F., Feldmann, U., Brown, C.M., Hammel, B.A., Lee, R.W. & Back, C.A. (1995). Interpretation of hot and dense absorption spectra of a near local thermodynamic equilibrium plasma by the super-transition-array method. Phys. Rev. E 52, 6686.Google Scholar
Boireau, L. (2005). Astrophysique de Laboratoire: Modélisation Analytique et Numérique du Choc Radiatif. Expériences au Moyen de Lasers de Puissance, PhD Thesis. Paris: Université Paris VI.
Bouquet, S., Stehlé, C., Koenig, M., Chièze, J.P., Benuzzi-Mounaix, A., Batani, S., Leygnac, S., Fleury, X., Merdji, H., Michaut, C., Thais, F., Grandjouan, N., Hall, T., Henry, E., Malka, V. & Lafon, J.P.J. (2004). Observations of laser driven supercritical radiative shock precursors. Phys. Rev. Lett. 92, 5001.CrossRefGoogle Scholar
Bozier, J.C., Thiell, G., Lebreton, J.P., Azra, S., Decroisette, M. & Schirmann, D. (1986). Experimental-observation of a radiative wave generated in xenon by a laser-driven supercritical shock. Phys. Rev. Lett. 57, 1304.CrossRefGoogle Scholar
Dautray, R. & Watteau, J.P. (1993). La Fusion Thermonucleaire Inertielle par Laser. Paris: Eyrolles.
Fleury, X., Bouquet, S., Stehlé, C., Koenig, M., Batani, D., Benuzzi-Mounaix, A., Chièze, J.P., Grandjouan N, Grenier, J., Hall, T., Henry, E., Lafon, J.P.J., Leygnac, S., Malka, V., Marchet, B., Merdji, H., Michaut, C., &Thais, F. (2002). A laser experiment for studying radiative shocks in astrophysics. Laser Part. Beams 20, 263.CrossRefGoogle Scholar
González, M. & Audit, E. (2005). Numerical treatment of radiative transfer. APSS 298, 357.CrossRefGoogle Scholar
González, M., Audit, E. & Huynh, P. (2006). HERACLES: A three dimensional radiation hydrodynamics code. A&A, submitted.
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Prag, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague asterix laser system. Phys. Plasmas 8, 2495.CrossRefGoogle Scholar
Leygnac, S. (2004). Etude numérique et Expérimentale D'ondes de Chocs Surcritiques et Effets Multidimensionnels du Rayonnement, PhD Thesis. Orsay: Université Paris XI.
Mihalas, D. & Mihalas, B.D. (1984). Foundation of Radiation Hydrodynamics. Oxford: Oxford University Press.
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. (1988). MULTI: a computer code for one-dimensional multigroup radiation hydrodynamics. Comp. Phys. Comm. 49, 475.CrossRefGoogle Scholar
Ullschmied, J., Cejnarova, A., Juha, L., Jungwirth, K., Kolman, B., Kozlova, M., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Kubat, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Turcicova, H. (1999). PALS—The first year of operation. Laser Part. Beams 17, 179.Google Scholar
Vinci, T., Koenig, M., Benuzzi-Mounaix, A., Boireau, L., Bouquet, S., Leygnac, S., Michaut, C., Stehle, C., Peyrusse, O. & Batani, D (2005). Density and temperature measurements on laser generated radiative shocks. APSS 298, 333.Google Scholar
Zel'dovich, Y.B. & Raiser, Y.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.