Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T07:21:42.707Z Has data issue: false hasContentIssue false

Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC

Published online by Cambridge University Press:  09 March 2009

V. Dubenkov
Affiliation:
ITEP, Moscow, 117259, Russia
B. Sharkov
Affiliation:
ITEP, Moscow, 117259, Russia
A. Golubev
Affiliation:
ITEP, Moscow, 117259, Russia
A. Shumshurov
Affiliation:
ITEP, Moscow, 117259, Russia
O. Shamaev
Affiliation:
ITEP, Moscow, 117259, Russia
I. Roudskoy
Affiliation:
ITEP, Moscow, 117259, Russia
A. Streltsov
Affiliation:
TRINITI, Troitsk, 142092, Moscow Region, Russia
Y. Satov
Affiliation:
TRINITI, Troitsk, 142092, Moscow Region, Russia
K. Makarov
Affiliation:
TRINITI, Troitsk, 142092, Moscow Region, Russia
Y. Smakovsky
Affiliation:
TRINITI, Troitsk, 142092, Moscow Region, Russia
D. Hoffmann
Affiliation:
GSI, Darmstadt, D-64002, Germany
W. Laux
Affiliation:
GSI, Darmstadt, D-64002, Germany
R. W. Müller
Affiliation:
GSI, Darmstadt, D-64002, Germany
P. Spädtke
Affiliation:
GSI, Darmstadt, D-64002, Germany
C. Stöckl
Affiliation:
GSI, Darmstadt, D-64002, Germany
B. Wolf
Affiliation:
GSI, Darmstadt, D-64002, Germany
J. Jacoby
Affiliation:
GSI, Darmstadt, D-64002, Germany

Abstract

Demonstration of matching a laser ion source to the GSI RFQ-Maxilac linear accelerator and the acceleration of a 1.8-mA current beam of Ta10+ ions up to 45 keV/u energy is presented. A 10J/μs CO2 laser has been used to produce a hot plasma plume, emitting highly charged tantulum ions. The correct geometry and potential distribution of the matching section has been designed in accordance with the results of computer simulations by using the AXCEL code. Measurements of the charge state distribution of the accelerated beam indicate that it contains about 70% Ta10+ and 30% Ta11+ ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amdiduche, Y. et al. 1992 Rev. Sci. Instr. 63, 2838.CrossRefGoogle Scholar
Barabash, L.S. et al. 1984 Laser Part. Beam 2, 49.CrossRefGoogle Scholar
Beljaev, G. et al. 1991 GSI Report GSI–91–2.Google Scholar
Beznogich, Yu.D. et al. 1984 Preprint JINR, Dubna, P9–84–251.Google Scholar
Brown, I.G., (ed.) 1989 The Physics and Technology of Ion Sources, John Wiley, New York.Google Scholar
Dubenkov, V. et al. 1993 GSI Report GSI–93–1.Google Scholar
Hughes, R.H. & Anderson, R.J. 1989 The Physics and Technology of Ion Sources, Brown, I.G., ed., John Wiley, New York.Google Scholar
Keller, R. 1986 Proc. Lin. Ace. Conf, Stanford 1986, SLAC-303, Stanford, CA, p. 232.Google Scholar
Keller, R. et al. 1986 Vacuum 36, 833.CrossRefGoogle Scholar
Ratzinger, U. 1989 GSI-UNILAC-INT/89–3.Google Scholar
Sharkov, B. et al. 1992 Rev. Sci. Instr. 63, 2841.CrossRefGoogle Scholar
Spädtke, P. 1983 GSI Report 83–9.Google Scholar
Spädtke, P. et al. 1988 Report GSI–88–20, GSI, Darmstadt.Google Scholar
Wolf, B.H. 1992 Proc. Int. Symp. on Discharges and Electrical Insulation in Vacuum, Darmstadt 1992 (VDE-Verlag Berlin, Offenbach).Google Scholar
Wolf, B.H. et al. 1990 Rev. Sci. Instr. 61 2, 408.CrossRefGoogle Scholar