Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T17:25:03.959Z Has data issue: false hasContentIssue false

Ontologies for cloud robotics

Published online by Cambridge University Press:  02 June 2020

Edison Pignaton de Freitas
Affiliation:
University Federal of Rio Grande do Sul, Brazil e-mail: [email protected]
Julita Bermejo-Alonso
Affiliation:
Universidad Politécnica de Madrid, Spain e-mail: [email protected]
Alaa Khamis
Affiliation:
General Motors, Canada e-mail: [email protected]
Howard Li
Affiliation:
University of New Brunswick, Canada e-mail: [email protected]
Joanna Isabelle Olszewska
Affiliation:
University of West of Scotland, UK e-mail: [email protected]

Abstract

Cloud robotics (CR) is currently a growing area in the robotic community. Indeed, the use of cloud computing to share data and resources of distributed robotic systems leads to the design and development of cloud robotic systems (CRS) which constitute useful technologies for a wide range of applications such as smart manufacturing, aid and rescue missions. However, in order to get coherent agent-to-cloud communications and efficient agent-to-agent collaboration within these CRS, there is a need to formalize the knowledge representation in CR. Hence, the use of ontologies provides a mean to define formal concepts and their relations in an interoperable way. This paper presents standard robotic ontologies and their extension in the CR domain as well as their possible implementations in the case of a real-world CR scenario.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arumugam, R., Enti, V. R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F. F., Kumar, A. S., Meng, K. D. & Kit, G. W. 2010. DAvinCi: a cloud computing framework for service robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3084–3089.Google Scholar
Balakirsky, S., Kootbally, Z., Schlenoff, C., Kramer, T. & Gupta, S. 2012. An industrial robotic knowledge representation for kit building applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1365–1370.Google Scholar
Balakirsky, S., Schlenoff, C., Fiorini, S., Redfield, S., Barreto, M., Nakawala, H., Carbonera, J., Soldatova, L., Bermejo-Alonso, J., Maikore, F., Goncalves, P., De Momi, E., Sampath Kumar, V. & Haidegger, T. 2017. Towards a robot task ontology standard. In Proceedings of the ASME International Manufacturing Science and Engineering Conference, 1–10.Google Scholar
Beetz, M., Bessler, D., Haidu, A., Pomarlan, M., Bozcuoglu, A. K. & Bartels, G. 2018. KnowRob 2.0: a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 512–519.Google Scholar
Benavidez, P., Muppidi, M., Rad, P., Prevost, J. J., Jamshidi, M. & Brown, L. 2015. Cloud-based realtime robotic visual SLAM. In Proceedings of the IEEE Annual IEEE Systems Conference, 773–777.Google Scholar
Bermejo-Alonso, J., Chibani, A., Goncalves, P., Li, H., Jordan, S., Olivares, A., Olszewska, J. I., Prestes, E., Fiorini, S. R. & Sanz, R. 2018. Collaboratively working towards ontology-based standards for robotics and automation. In IEEE International Conference on Intelligent Robots and Systems (IROS).Google Scholar
Bermejo-Alonso, J., Hernandez, C. & Sanz, R. 2016. Model-based engineering of autonomous systems using ontologies and metamodels. In Proceedings of the IEEE International Symposium on Systems Engineering, 1–8.Google Scholar
Bermejo-Alonso, J. & Sanz, R. 2011. An ontological framework for autonomous systems modelling. International Journal On Advances in Intelligent Systems 30(3–4), 211–225.Google Scholar
Bruckner, D., Picus, C., Velik, R., Herzner, W. & Zucker, G. 2012. Hierarchical semantic processing architecture for smart sensors in surveillance networks. IEEE Transactions on Industrial Informatics 80(2), 291–301.CrossRefGoogle Scholar
Calzado, J., Lindsay, A., Chen, C., Samuels, G. & Olszewska, J. I. 2018. SAMI: interactive, multi-sense robot architecture. In Proceedings of the IEEE International Conference on Intelligent Engineering Systems, 317–322.Google Scholar
Chen, C.-L., Li, Y.-T., Deng, Y.-Y. and Li, C.-T. 2018. Robot identification and authentication in a robot cloud service system. IEEE Access 6, 0 5648856503.Google Scholar
Dogmus, Z., Erdem, E. & Patoglu, V. 2015. RehabRobo-Onto: design, development and maintenance of a rehabilitation robotics ontology on the cloud. Robotics and Computer-Integrated Manufacturing 33, 100–109.CrossRefGoogle Scholar
Doriya, R., Chakraborty, P. & Nandi, G. C. 2012. Robotic services in cloud computing paradigm. In Proceedings of the IEEE International Symposium on Cloud and Services Computing, 80–83.Google Scholar
Doriya, R., Mishra, S. & Gupta, S. 2015. A brief survey and analysis of multi-robot communication and coordination. In Proceedings of the IEEE International Conference on Computing, Communication and Automation, 1014–1021.Google Scholar
Du, Z., Yang, W., Chen, Y., Sun, X., Wang, X. & Xu, C. 2011. Design of a robot cloud center. In Proceedings of the IEEE International Symposium on Autonomous Decentralized Systems, 269–275.Google Scholar
Ermacora, G., Toma, A., Bona, B., Chiaberge, M., Silvagni, M., Gaspardone, M. & Antonini, R. 2013. A cloud robotics architecture for an emergency management and monitoring service in a smart city environment. In IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS).Google Scholar
Fiorini, S. R., Bermejo-Alonso, J., Goncalves, P., Pignaton de Freitas, E., Olivares Alarcos, A., Olszewska, J. I., Prestes, E., Schlenoff, C., Ragavan, S. V., Redfield, S., Spencer, B. & Li, H. 2017. A suite of ontologies for robotics and automation. IEEE Robotics and Automation Magazine 24(1), 8–11.CrossRefGoogle Scholar
Guizzo, E. 2011. Robots with their heads in the clouds. IEEE Spectrum 48(3), 16–18.CrossRefGoogle Scholar
Hernandez, C., Bermejo-Alonso, J. & Sanz, R. 2018. A self-adaptation framework based on functional knowledge for augmented autonomy in robots. Integrated Computer-Aided Engineering 25(2), 157–172.CrossRefGoogle Scholar
Hu, G., Tay, W. P. & Wen, Y. 2012. Cloud robotics: architecture, challenges and applications. IEEE Network 26(3), 21–28.CrossRefGoogle Scholar
Huang, J.-Y., Lee, W.-P. & Lin, T.-A. 2019. Developing context-aware dialoguing services for a cloud-based robotic system. IEEE Access 7, 4429344306.Google Scholar
Hunziker, D., Gajamohan, M., Waibel, M. & D’Andrea, R. 2013. Rapyuta: the RoboEarth cloud engine. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 438–444.Google Scholar
Jangid, N. & Sharma, B. 2016. Cloud computing and robotics for disaster management. In Proceedings of the IEEE International Conference on Intelligent Systems, Modelling and Simulation, 20–24.Google Scholar
Jordan, S., Haidegger, T., Kovacs, L., Felde, I. & Rudas, I. 2013. The rising prospects of cloud robotic applications. In Proceedings of the IEEE International Conference on Computational Cybernetics, 327–332.Google Scholar
Kamei, K., Nishio, S., Hagita, N. & Sato, M. 2012. Cloud networked robotics. IEEE Network 26(3), 28–34.CrossRefGoogle Scholar
Kamei, K., Zanlungo, F., Kanda, T., Horikawa, Y., Miyashita, T. & Hagita, N. 2017. Cloud networked robotics for social robotic services extending robotic functional service standards to support autonomous mobility system in social environments. In Proceedings of the IEEE International Conference on Ubiquitous Robots and Ambient Intelligence, 897–902.Google Scholar
Kehoe, B., Patil, S., Abbeel, P. & Goldberg, K. 2015. A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering 12(2), 398–409.CrossRefGoogle Scholar
Kitamura, Y. & Mizoguchi, R. 2003. Ontology-based description of functional design knowledge and its use in a functional way server. Expert Systems with Applications 24(2), 153–166.CrossRefGoogle Scholar
Kovacs, D. 2012. A multi-agent extension of PDDL3. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 1–9.Google Scholar
Kuffner, J. J. 2010. Cloud-enabled humanoid robots. In IEEE-RAS International Conference on Humanoid Robots.Google Scholar
Lam, M.-L. & Lam, K.-Y. 2014. Path planning as a service (PPaaS): cloud-based robotic path planning. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 1839–1844.Google Scholar
McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D. & Wilkins, D. 1998. PDDL: The Planning Domain Definition Language.Google Scholar
Mell, P. & Grance, T. 2011. The NIST definition of cloud computing. NIST Special Publication 800–145. September 2011.CrossRefGoogle Scholar
Miratabzadeh, S. A., Gallardo, N., Gamez, N., Haradi, K., Puthussery, A. R., Rad, P. & Jamshidi, M. 2016. Cloud robotics: a software architecture for heterogeneous large-scale autonomous robots. In Proceedings of the IEEE World Automation Congress, 1–6.Google Scholar
Mohanarajah, G., Hunziker, D., D’Andrea, R. & Waibel, M. 2015. Rapyuta: a cloud robotics platform. IEEE Transactions on Automation Science and Engineering 12(2), 481–493.CrossRefGoogle Scholar
Muhayyuddin, A. A. & Rosell, J. 2015. Ontological physics-based motion planning for manipulation. In Proceedings of the IEEE Conference on Emerging Technologies Factory Automation (ETFA), 1–7.Google Scholar
Olszewska, J. I. 2017. Clock-model-assisted agent’s spatial navigation. In Proceedings of the International Conference on Agents and Artificial Intelligence, 687–692.Google Scholar
Olszewska, J. I. & Allison, A. K. 2018. ODYSSEY: software development life cycle ontology. In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, 303–311.Google Scholar
Olszewska, J. I., Barreto, M., Bermejo-Alonso, J., Carbonera, J., Chibani, A., Fiorini, S., Goncalves, P., Habib, M., Khamis, A., Olivares, A., Freitas, E. P., Prestes, E., Ragavan, S. V., Redfield, S., Sanz, R., Spencer, B. & Li, H. Ontology for autonomous robotics. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 189–194.Google Scholar
Olszewska, J. I., Houghtaling, M., Goncalves, P., Haidegger, T., Fabiano, N., Carbonera, J. L., Fiorini, S. R. & Prestes, E. 2018. Robotic ontological standard development life cycle. In IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
Olszewska, J. I., Houghtaling, M., Goncalves, P. J. S., Fabiano, N., Haidegger, T., Carbonera, J. L., Patterson, W. R., Ragavan, S. V., Fiorini, S. R. & Prestes, E. 2020. Robotic ontological standard development life cycle in action. Journal of Intelligent and Robotic Systems 98(1), 119–131.CrossRefGoogle Scholar
Olszewska, J. I., Simpson, R. & McCluskey, T. L. 2014. Dynamic OWL ontology design using UML and BPMN. In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, 436–444.Google Scholar
Prestes, E., Carbonera, J., Fiorini, S., Jorge, V., Abel, M., Madhavan, R., Locoro, A., Goncalves, P., Barreto, M., Habib, M., Chibani, A., Gerard, S., Amirat, Y. & Schlenoff, C. 2013. Towards a core ontology for robotics and automation. Robotics and Autonomous Systems 61(11), 1193–1204.CrossRefGoogle Scholar
Quintas, J. M., Menezes, P. J. & Dias, J. M. 2011. Cloud robotics: toward context aware robotic networks. In Proceedings of the IASTED International Conference on Robotics, 420–427.Google Scholar
Rahimi, R., Shao, C., Veeraraghavan, M., Fumagalli, A., Nicho, J., Meyer, J., Edwards, S., Flannigan, C. & Evans, P. 2017. An industrial robotics application with cloud computing and high-speed networking. In Proceedings of the IEEE International Conference on Robotic Computing, 44–51.Google Scholar
Rahman, A., Jin, J., Cricenti, A. L., Rahman, A. & Kulkarni, A. 2019. Communication-aware cloud robotic task offloading with on-demand mobility for smart factory maintenance. IEEE Transactions on Industrial Informatics 15(5), 2500–2511.CrossRefGoogle Scholar
Riazuelo, L., Tenorth, M., Di Marco, D., Salas, M., Galvez-Lopez, D., Moesenlechner, L., Kunze, L., Beetz, M., Tardos, J. D., Montano, L. & Martinez-Montiel, J. M. 2015. RoboEarth semantic mapping: a cloud enabled knowledge-based approach. IEEE Transactions on Automation Science and Engineering 12(2), 432–443.CrossRefGoogle Scholar
Salmeron-Garcia, J., Inigo-Blasco, P., Diaz-del Rio, F. & Cagigas-Muniz, D. 2015. A tradeoff analysis of a cloud-based robot navigation assistant using stereo image processing. IEEE Transactions on Automation Science and Engineering 12(2), 444–454.CrossRefGoogle Scholar
Sharath, B. S., Srisha, R., Shashidhar, K. V. & Bharadwaj, S. S. 2018. Intelligent and smart cloud based autonomous robotic kitchen system. In Proceedings of the IEEE International Conference on Intelligent Computing and Control Systems, 601–606.Google Scholar
Soldatova, L. N., Clare, A., Sparkes, A. & King, R. D. 2006. An ontology for a robot scientist. Bioinformatics 22(14), e464–e471.CrossRefGoogle ScholarPubMed
Tenorth, M., Kamei, K., Satake, S., Miyashita, T. & Hagita, N. 2013. Building knowledge-enabled cloud robotics applications using the ubiquitous network robot platform. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5716–5721.Google Scholar
Turnbull, L. & Samanta, B. 2013. Cloud robotics: formation control of a multi-robot system utilizing cloud infrastructure. In Proceedings of IEEE Southeastcon, 1–4.Google Scholar
Vick, A., Vonasek, V., Penicka, R. & Kruger, J. 2015. Robot control as a service - towards cloud-based motion planning and control for industrial robots. In Proceedings of the IEEE International Workshop on Robot Motion and Control, 33–39.Google Scholar
W3C OWL Working Group. 2009. OWL2: Web Ontology Language Document Overview.Google Scholar
Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J. M. M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O. & van de Molengraft, R. 2011. Roboearth. IEEE Robotics Automation Magazine 18(2), 69–82.CrossRefGoogle Scholar
Wang, S., Krishnamachari, B. & Ayanian, N. 2015. The optimism principle: a unified framework for optimal robotic network deployment in an unknown obstructed environment. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2578–2584.Google Scholar
Zhang, H. & Zhang, L. 2019. Cloud robotics architecture: trends and challenges. In Proceedings of the IEEE International Conference on Service-Oriented System Engineering, 362–367.Google Scholar
Zhang, Y., Li, L., Nicho, J., Ripperger, M., Fumagalli, A. & Veeraraghavan, M. 2019. Gilbreth 2.0: an industrial cloud robotics pick-and-sort application. In Proceedings of the IEEE International Conference on Robotic Computing, 38–45.Google Scholar