Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T23:24:27.412Z Has data issue: false hasContentIssue false

Termite mounds may not be foraging hotspots for mega-herbivores in a nutrient-rich matrix

Published online by Cambridge University Press:  04 September 2013

Justice Muvengwi*
Affiliation:
School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa Department of Environmental Science, Bindura University of Science Education, Private Bag, 1020, Bindura, Zimbabwe
Monicah Mbiba
Affiliation:
School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa Department of Environmental Science, Bindura University of Science Education, Private Bag, 1020, Bindura, Zimbabwe
Tatenda Nyenda
Affiliation:
Department of Environmental Science, Bindura University of Science Education, Private Bag, 1020, Bindura, Zimbabwe
*
1Corresponding author. Email: [email protected]

Abstract:

Our study investigated the influence of termitaria on vegetation utilization by elephants in Chewore North, Zimbabwe. Ten termite mounds and ten similar sized control plots were surveyed for soil nutrients, tree species diversity and plant biomass removal by elephants. Termite mounds had higher mean (± SE) concentrations of P, Ca, Mg and Na (0.15 ± 0.01, 48.8 ± 9.32, 5.78 ± 1.59 and 0.47 ± 0.12 meq per 100 g respectively) than control plots (0.05 ± 0.01, 3.33 ± 0.56, 1.53 ± 0.22 and 0.19 ± 0.02 meq per 100 g). However, Shannon Wiener index of tree diversity did not vary significantly between termite mounds (1.13 ± 0.280) and their control plots (0.827 ± 0.469). Contrary to most studies investigating patterns of vegetation utilization by large mammalian herbivores on termitaria, biomass removal was five times more on control plots than termite mounds. No difference in biomass removal was noted for Colophospermum mopane which had enough replicates for statistical analysis both on termite mounds and control plots. Our study negates the hypothesis that nutrient-rich soil patches will act as feeding hotspots for large mammalian herbivores. We concluded that vegetation utilization by elephants may be tree species specific, particularly in nutrient-rich environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDERSON, G. D. & WALKER, B. H. 1974. Vegetation composition and elephant damage in the Sengwa Wildlife Research Area, Rhodesia. Journal of the South African Wildlife Management Association 4:114.Google Scholar
ANDERSON, J. M. & INGRAM, J. S. I. 1993. Tropical soil biology and fertility: a handbook of methods. CABI, Wallingford. 221 pp.Google Scholar
BEN-SHAHAR, R. 1996. Do elephants over-utilize mopane woodlands in northern Botswana? Journal of Tropical Ecology 12:505515.CrossRefGoogle Scholar
BRODY, A. K., PALMER, T. M., FOX-DOBBS, K. & DOAK, D. F. 2010. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium. Ecology 91:399407.CrossRefGoogle ScholarPubMed
COATES PALGRAVE, K. 2002. Trees of southern Africa. (Third edition.). Struik Publishers, Cape Town. 1212 pp.Google Scholar
COLEY, P. D., BRYANT, J. P. & CHAPIN, S. F. 1985. Resource availability and plant anti-herbivore defense. Science 230:895899.CrossRefGoogle Scholar
COOPER, S. M. & OWEN-SMITH, N. 1985. Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia 67:142146.CrossRefGoogle Scholar
DANGERFIELD, J., MCCARTHY, T. & ELLERY, W. 1998. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology 14:507520.CrossRefGoogle Scholar
FLEMING, P. & LOVERIDGE, J. 2003. Miombo woodland termite mounds: resource islands for small vertebrates? Journal of Zoology 259:161168.CrossRefGoogle Scholar
FROST, P. G. H. 1997. The ecology of miombo woodlands. Pp. 1158 in Campbell, B. M. (ed.). The miombo woodlands in transition: woodlands and welfare in Africa. Center for International Forestry Research, Bogor.Google Scholar
GRANT, C. C. & SCHOLES, M. C. 2006. The importance of nutrient hot-spots in the conservation and management of large wild mammalian herbivores in semi-arid savannas. Biological Conservation 130:426437.CrossRefGoogle Scholar
HARRIS, W. V. 1966. The role of termites in tropical forestry. Insectes Sociaux 13:255266.CrossRefGoogle Scholar
HOFMANN, R. R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443457.CrossRefGoogle ScholarPubMed
HOLDO, R. M. 2003. Woody plant damage by African elephants in relation to leaf nutrients in western Zimbabwe. Journal of Tropical Ecology 19:189196.CrossRefGoogle Scholar
HOLDO, R. M. & MCDOWELL, L. R. 2004. Termite mounds as nutrient-rich food patches for elephants. Biotropica 36:231239.Google Scholar
HOLT, J. A. & LEPAGE, M. 2000. Termites and soil properties. Pp. 389407 in Abe, T., Bignell, D. E. & Higashi, M. (ed.). Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
JACHMANN, H. 1989. Food selection in elephants in the ‘miombo’ biome, in relation to leaf chemistry. Biochemical Ecology and Systematics 17:1524.CrossRefGoogle Scholar
JACHMANN, H. & BELL, R. H. V. 1985. Utilization by elephants of the Brachystegia woodlands of the Kasungu National Park, Malawi. African Journal of Ecology 23:245258.CrossRefGoogle Scholar
KONATE, S., LE ROUX, X., TESSIER, D. & LEPAGE, M. 1999. Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant and Soil 206:4760.CrossRefGoogle Scholar
LEE, K. E. & WOOD, T. G. 1971. Termites and soils. Academic Press, London. 251 pp.Google Scholar
LEVICK, S. R., ASNER, G. P., KENNEDY-BOWDOIN, T. & KNAPP, D. E. 2010. The spatial extent of termite influences on herbivore browsing in an African savanna. Biological Conservation 143:24622467.CrossRefGoogle Scholar
LOVERIDGE, J. P. & MOE, S. R. 2004. Termitaria as browsing hotspots for African megaherbivores in miombo woodland. Journal of Tropical Ecology 20:337343.CrossRefGoogle Scholar
MATTSON, W. J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology, Evolution and Systematics 11:119161.CrossRefGoogle Scholar
MOBÆK, R., NARMO, A. K. & MOE, S. R. 2005. Termitaria are focal feeding sites for large ungulates in Lake Mburo National Park, Uganda. Journal of Zoology London 267:97102.CrossRefGoogle Scholar
MOE, S. R., MOBAEK, R. & NARMO, A. K. 2009. Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology 202:3140.CrossRefGoogle Scholar
O'CONNOR, T. G. 2013. Termite mounds as browsing hotspots: an exception to the rule. Journal of Vegetation Science 24:211213.CrossRefGoogle Scholar
OKALEBO, J. R., GATHMA, K. W. & WOOMER, P. L. 2002. Laboratory methods of soil and plant analysis: a working manual. (Second edition.). Soil Science Society of East Africa, Nairobi. 128 pp.Google Scholar
OKULLO, P. & MOE, S. R. 2012. Termite activity, not grazing, is the main determinant of spatial variation in savanna herbaceous vegetation. Journal of Ecology 100:232241.CrossRefGoogle Scholar
OWEN-SMITH, N. 1993. Woody plants, browsers and tannins in southern African savannas. South African Journal of Science 89:505510.Google Scholar
OWEN-SMITH, N. & CHAFOTA, J. 2012. Selective feeding by a megaherbivore, the African elephant (Loxodonta africana). Journal of Mammalogy 93:698705.CrossRefGoogle Scholar
OWEN-SMITH, N. & COOPER, S. M. 1987.a Palatability of woody plants to browsing ungulates in a South African savanna. Ecology 68:319331.CrossRefGoogle Scholar
OWEN-SMITH, N. & COOPER, S. M. 1987b. Assessing food preferences of ungulates by acceptability indices. Journal of Wildlife Management 51:372378.CrossRefGoogle Scholar
POMEROY, D. E. 1977. The distribution and abundance of large termite mounds in Uganda. Journal of Applied Ecology 14:465475.CrossRefGoogle Scholar
PRETORIUS, Y., DE BOER, W. F., VAN DER WAAL, C., DE KNEGT, H. J., GRANT, R. C., KNOX, N. M., KOHI, E. M., MWAKIWA, E., PAGE, B. R., PEEL, M. J. S., SKIDMORE, A. K., SLOTOW, R., VAN WIEREN, S. E. & PRINS, H. H. T. 2011. Soil nutrient status determines how elephant utilize trees and shape environments. Journal of Animal Ecology 80:875883.CrossRefGoogle ScholarPubMed
PRINGLE, R. M., DOAK, D. F., BRODY, A. K., JOCQUE, R. & PALMER, T. M. 2010. Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biology 8:5, e1000377. doi:10.1371/journal.pbio.1000377.CrossRefGoogle Scholar
SEARLE, K. R., HOBBS, N. T. & SHIPLEY, L. A. 2005. Should I stay or should I go? Patch departure decisions by herbivores at multiple scales. Oikos 111:414424.CrossRefGoogle Scholar
SILESHI, G. W. & ARSHAD, M. A. 2012. Application of distance decay models for inferences about termite mound induced patterns in dry land ecosystems. Journal of Arid Environments 77:138148.CrossRefGoogle Scholar
THOMAS, G. W. 1996. Soil pH and soil acidity. Pp. 475490 in Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. & Sumner, M. E. (eds.). Methods of soil analysis. Part 3 – chemical methods. University of Kentucky, Lexington.Google Scholar
THOMSON, P. J. 1975. The role of elephants, fire and other agents in the decline of a Brachystegia boehmii woodland. Journal of the South African Wildlife Management Association 5:1118.Google Scholar
TRAORE, S., NYGARD, R., GUINKO, S. & LEPAGE, M. 2008. Impact of Macrotermes termitaria as a source of heterogeneity on tree diversity and structure in a Sudanian savannah under controlled grazing and annual prescribed fire (Burkina Faso). Forest Ecology and Management 255:23372346.CrossRefGoogle Scholar
TURNER, S. J. 2000. Architecture and morphogenesis in the mound of Macrotermes michaelseni (Sjöstedt) (Isoptera: Termitidae, Macrotermitinae) in northern Namibia. Cimbebasia 16:143175.Google Scholar
VAN DER PLAS, F., HOWISON, R., REINDERS, J., FOKKEMA, W. & OLFF, H. 2013. Functional traits of trees on and off termite mounds: understanding the origin of biotically-driven heterogeneity in savannas. Journal of Vegetation Science 24:227238.CrossRefGoogle Scholar
VAN DER WAAL, C., KOOL, A., MEIJER, S. S., KOHI, E., HEITKONIG, I. M. A., DE BOER, W. F., VAN LANGEVELDE, F., GRANT, R. C., PEEL, M. J. S., SLOTOW, R., DE KNEGT, H. J., PRINS, H. H. T. & DE KROON, H. 2011. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165:10951107.CrossRefGoogle ScholarPubMed
VAN WYK, P. & FAIRALL, N. 1969. The influence of the African elephant on the vegetation of the Kruger National Park. Koedoe 12:5789.CrossRefGoogle Scholar
WOOD, S. L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6:11359.Google Scholar
WOOD, T. G. & LEE, K. E. 1971. Abundance of mounds and competition among colonies of some Australian termite species. Pedobiologia 11:341366.CrossRefGoogle Scholar