Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T18:45:27.995Z Has data issue: false hasContentIssue false

Leaf tissue water relations and hydraulic properties of sclerophyllous vegetation on white sands of the upper Rio Negro in the Amazon region

Published online by Cambridge University Press:  01 May 2009

M. A. Sobrado*
Affiliation:
Laboratorio de Biología Ambiental de Plantas, Departamento de Biología de Organismos, Universidad Simón Bolívar, Apartado 89.000, Caracas 1080 A, Venezuela

Abstract:

The objective of this study was to explore the leaf tissue water relations in terminal branches, as well as the relations between xylem structure and function of five sclerophyllous species coexisting on white sands within the Amazon region. In these species, which possess costly leaves and thrive in an extremely nutrient-poor habitat, the preservation of leaf survival would be of comparable importance to the preservation of xylem vessels. Three trees per species were tagged in the field for all measurements. Minimum leaf water potential (Ψ) was −1.53 ± 0.61 and −0.94 ± 0.10 MPa during rainless and rainy days, respectively. The Ψ for turgor loss averaged −1.92 ± 0.05 MPa. Therefore, minimum Ψ was maintained within a safety range above the critical value for turgor loss. Xylem (Kx) and leaf (Kl) specific conductivity averaged 1.4 ± 0.22 and 0.00033 ± 0.000045 kg m−1 s−1 MPa−1, respectively. Water supply was favoured in species with higher vessel density, and all species depended on relatively less abundant larger vessels for water transport. This would be advantageous because leaves were unable to develop very negative water potentials in order to maintain transpiration. High transpiration rates may be restricted to a few hours daily so as to prevent cavitation of widest vessels.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABRAMS, M. D. 1990. Adaptations and responses to drought in Quercus species of North America. Tree Physiology 7:227238.CrossRefGoogle ScholarPubMed
BAAS, P. 1986. Ecological patterns in xylem anatomy. Pp. 327352 in Givnish, T. J. (ed.). On the economy of plant form and function. Cambridge University Press, Cambridge.Google Scholar
BOND, B. J. & KAVANAGH, K. 1999. Stomatal behaviour of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiology 19:503510.Google Scholar
BONGERS, F., ENGELEN, D. & KLINGE, H. 1985. Phytomass structure of natural plant communities on spodosol in southern Venezuela: the Bana woodland. Vegetatio 63:1394.CrossRefGoogle Scholar
BOWMAN, W. D. & ROBERTS, S. W. 1985. Seasonal changes in tissue elasticity in chaparral shrubs. Physiologia Plantarum 65:233236.Google Scholar
BREIMER, R. F. 1985. Some observations on soils in relation to forest types in San Carlos de Rio Negro, Venezuela. Pp. 108110 in Breimer, R. F., van Kekem, A. J. & van Reuler, H. (eds). Guidelines for soil survey in ecological research. MAB Technical Notes No 17. UNESCO, ParisGoogle Scholar
CARLQUIST, S. 1988. Comparative wood anatomy: systematic, ecological and evolutionary aspects of dicotyledon wood. Springer-Verlag, New York. 418 pp.CrossRefGoogle Scholar
CHOAT, B., BALL, M. C., LULY, J. G. & HOLTUM, J. A. M. 2005. Hydraulic architecture of deciduous and evergreen dry forest tree species from north-eastern Australia. Trees 19:305311.Google Scholar
CHOAT, B., SACK, L. & HOLBROOK, N. M. 2007. Diversity of hydraulic traits in nine Cordia species growing in tropical forest with contrasting precipitation. New Phytologist 175:686698.Google Scholar
CHOAT, B., COBB, A. R. & JANSEN, S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist 177:608626.CrossRefGoogle ScholarPubMed
CUTLER, J. M., RAINS, D. W. & LOOMIS, R. S. 1977. The importance of cell size in the water relations of plants. Physiologia Plantarum 40:255260.Google Scholar
GARTNER, B. L., MOORE, J. R. & GARDINER, B. A. 2004. Gas in stems: abundance and potential consequences for tree biomechanics. Tree Physiology 24:12391250.CrossRefGoogle ScholarPubMed
HACKE, U. G. & SPERRY, J. S. 2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics 4:97115.CrossRefGoogle Scholar
HACKE, U. G., SPERRY, J. S., WHEELER, J. K. & CASTRO, L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology 26: 689701.CrossRefGoogle ScholarPubMed
HERRERA, T. 1977. Soil and terrain condition in the San Carlos de Rio Negro Project (Venezuela MAB-1) study site; correlation with vegetation types. Pp. 182188 in Brünig, E. F. (ed). Transactions of the International MAB-IUFRO Workshop on Tropical Rainforest Ecosystems Research (Jakarta). Special Report No 1. World Chair of Forestry, Hamburg-Reinbek.Google Scholar
HERRERA, R., JORDAN, C. F., KLINGE, H. & MEDINA, E. 1978. Amazon ecosystems. Their structure and functioning with particular emphasis on nutrients. Interciencia 3:223232.Google Scholar
JONES, H. G. & SUTHERLAND, R. A. 1991. Stomatal control of xylem embolism. Plant, Cell and Environment 14:607612.Google Scholar
KUBISKE, M. E. & ABRAMS, M. D. 1990. Pressure-volume relationships in non-rehydrated tissue at various water deficits. Plant, Cell and Environment 13:9951000.CrossRefGoogle Scholar
KYRIAKOPOULUS, E. & RICHTER, H. 1991. Desiccation tolerance and osmotic parameter in detached leaves of Quercus ilex L. Acta Oecologica 12:357367.Google Scholar
LADIGES, P. Y. 1975. Some aspects of tissue water relations in three populations of Eucalyptus viminalis Labill. New Phytologist 75:5362.CrossRefGoogle Scholar
LAWTON, R. O. 1984. Ecological constraints on wood density in a tropical montane rain forest. American Journal of Botany 71:261267.Google Scholar
MEDINA, E., SOBRADO, M. & HERRERA, R. 1978. Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Radiation and Environmental Biophysics 15:131140.CrossRefGoogle Scholar
MEDINA, E., GARCIA, V. & CUEVAS, E. 1990. Sclerophylly and oligotrophic environments: relationships between leaf structure and mineral nutrient content, and drought resistance in tropical rain forests the upper Rio Negro region. Biotropica 22:5154.CrossRefGoogle Scholar
MEINZER, F. C. 2003. Functional convergence in plant responses to the environment. Oecologia 134:111.Google Scholar
MEINZER, F. C., GOLDSTEIN, G., FRANCO, A. C., BUSTAMANTE, M., IGLER, E., JACKSON, P., CZALDAS, L. & RUNDEL, P. W. 1999. Atmospheric and hydraulic limitation on transpiration in Brazilian cerrado woody species. Functional Ecology 13:273282.Google Scholar
MEINZER, F. C., WOOODRUFF, D. R., DOMEC, J. C., GOLDSTEIN, G., CAMPANELLO, P. I., GATTI, M. G. & VILLALOBOS-VEGA, R. 2008. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:3141.CrossRefGoogle ScholarPubMed
MÜLLER-DOMBOIS, D. & ELLENBERG, H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York. 547 pp.Google Scholar
NIINEMETS, U. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453469.Google Scholar
OLIVARES, E. & MEDINA, E. 1992. Water and nutrient relations of woody perennials from tropical dry forests. Journal of Vegetation Science 3:383392.Google Scholar
PATIÑO, S., LLOYD, J., PAIVA, R., QUESADA, C. A., BAKER, T. R., SANTOS, A. J. B.., MERCADO, L. M., MALHI, Y., PHILLIPS, O. L., AGUILAR, A., ALVAREZ, E., ARROYO, L., BONAI, D., COSTA, A. C. L., CZIMCZIK, C. I., GALLO, J., HERRERA, E., HIGUCHI, N., HORNA, V., HOYOS, E. J., JIMÉNEZ, E. M., KILLEEN, T., LEAL, E., LUIZAO, F., MEIR, P., MONTEAGUDIO, A., NEILL, D., NUÑEZ-VARGAS, P., PALOMINI, W., PEACOCK, J., PEÑA-CRUZ, A., PEÑUELA, M. C., PITMAN, N., PRIANTE, F., PRIETO, A., PANFIL, S. N., RUDAS, A., SALOMÃO, R., SILVA, N., SILVEIRA, M., SOARES De ALMEIDA, S., TORRES-LEZAMA, A., TURRIAGO, J. D., VAZQUEZ-MARTINEZ, R., SCHWARZ, M., SOTA, A., SCHMERIER, J., VIEIRA, I., VILLANUEVA, B. & VITZTHUM, P. 2008. Branch xylem density variations across Amazonia. Biogeosciences Discussions 5:20032047.Google Scholar
POORTER, L. 2008. The relationships of wood-, gas- and water fractions of tree stems to performance and life history variation in tropical trees. Annals of Botany 102:367375.CrossRefGoogle ScholarPubMed
POORTER, L. & BONGERS, F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:17331743.Google Scholar
RICHTER, H. 1997. Water relations of plants in the field: some comments on the measurement of selected parameters. Journal of Experimental Botany 48:17.Google Scholar
ROBERTS, S. W., STRAIN, B. R. & KNÖRR, K. R. 1980. Seasonal patterns of leaf water relations in four co-occurring forest tree: parameters from pressure-volume curves. Oecologia 46:330337.Google Scholar
SALIENDRA, N. Z., SPERRY, J. S. & COMSTOCK, J. P. 1995. Influence of leaf water status on stomatal response to humidity, hydraulic conductance and soil drought in Betula occidentalis. Planta 196:357366,CrossRefGoogle Scholar
SALLEO, S. & LO GULLO, M. A. 1990. Sclerophylly and plant water relations in three Mediterranean Quercus species. Annals of Botany 65:259270.Google Scholar
SALLEO, S., NARDINI, A. & LO GULLO, M. A. 1997. Is sclerophylly of Mediterranean evergreens an adpatation to drought? New Phytologist 135:603612.Google Scholar
SCHULTZ, H. & MATTHEWS, M. A. 1993. Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.): evidence that low light uncouples water transport capacity from leaf area. Planta 190:393406.Google Scholar
SIAU, J. F. 1971. Flow in wood. Syracuse University Press, New York. 131 pp.Google Scholar
SIAU, J. F. 1984. Transport processes in wood. Springer-Verlag, Berlin. 245 pp.Google Scholar
SOBRADO, M. A. 1977. Aspectos ecofisiológicos de la vegetación esclerófila de suelos arenosos, podzolizados e inundables de la cuenca del Río Negro, Territorio Federal Amazonas. Tesis de Biología. Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 122 pp.Google Scholar
SOBRADO, M. A. 1986. Aspects of tissue water relations and seasonal changes of leaf water potential components of evergreen and deciduous species coexisting in tropical dry forests. Oecologia 68:413416.CrossRefGoogle ScholarPubMed
SOBRADO, M. A. 2008. Leaf characteristics and diurnal variation of chlorophyll fluorescence in leaves of the ‘Bana’ vegetation of the Amazon region. Photosynthetica 46:202207.CrossRefGoogle Scholar
SOBRADO, M. A. 2009. Cost-benefit relationships in sclerophyllous leaves of the ‘Bana’ vegetation in the Amazon region. Trees 23:429437.Google Scholar
SOBRADO, M. A. & MEDINA, E. 1980. General morphology, anatomical structure and nutrient content of sclerophyllous leaves of the ‘Bana’ vegetation. Oecologia 45:341345.CrossRefGoogle ScholarPubMed
SPERRY, J. S. 2003. Evolution of water transport and xylem structure. International Journal of Plant Science 164:115127.Google Scholar
SPERRY, J. S. & SALIENDRA, N. Z. 1994. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell and Environment 17:12331241.CrossRefGoogle Scholar
SPERRY, J. S. & SULLIVAN, J. E. M. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology 100:605613.Google Scholar
SPERRY, J. S., TYREE, M. T. & DONNELLY, J. R. 1988a. Vulnerability to embolisms in a mangrove vs an inland species of Rhizophoraceae. Physiologia Plantarum 74:276283.Google Scholar
SPERRY, J. S., DONNELLY, J. R. & TYREE, M. T. 1988b. A method for measuring Hydraulic conductivity and embolism xylem. Plant, Cell and Environment 11:3540.CrossRefGoogle Scholar
SPERRY, J. S., HACKE, U. G., OREN, R. & COMSTOCK, J. P. 2002. Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment 25:251261.CrossRefGoogle ScholarPubMed
TURNER, I. M. 1994. Sclerophylly: primarily protective? Functional Ecology 8:669675.CrossRefGoogle Scholar
TURNER, N. C. 1981. Techniques and experimental approaches for the measurements of plant water status. Plant Soil 58:339366.Google Scholar
TYREE, M. T. & EWERS, F. W. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119:345360.Google Scholar
Tyree, M. T. & HAMMEL, M. 1982. The measurements of the turgor pressure and water relations of plants by the pressure-bomb technique. Journal of Experimental Botany 23:267283.CrossRefGoogle Scholar
TYREE, M. T. & SPERRY, J. S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology 88:574580.Google Scholar
TYREE, M. T. & ZIMMERMANN, M. H. 2002. Xylem structure and the ascent of sap. (Second edition). Springer-Verlag, Berlin. 278 pp.Google Scholar
TYREE, M. T., DAVIES, S. D. & COCHARD, H. 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal 15:335360.Google Scholar
WHITEHEAD, D. & JARVIS, P. J. 1981. Coniferous forests and plantations. Pp. 49152 in Kozlowski, T. T. (ed.). Water deficits and plant growth. Volume 6. Academic Press, New York.Google Scholar
WOODCOCK, D. W., DOS SANTOS, G. & REYNEL, C. 2000. Wood characteristics of Amazon forest types. IAWA Journal 21:277292.Google Scholar
ZIMMERMANN, M. H. 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin. 143 pp.Google Scholar
ZOTZ, G., TYREE, M. T., PATIÑO, S. & CARLTON, M. R. 1998. Hydraulic architecture and water use of selected species from a lower montane forest in Panama. Trees 12:302309.CrossRefGoogle Scholar