Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T17:19:14.307Z Has data issue: false hasContentIssue false

Host size and abundance of hemiepiphytes in a subtropical stand of Brazilian Atlantic Forest

Published online by Cambridge University Press:  08 December 2009

Rodrigo Leonel Lozano Orihuela*
Affiliation:
Universidade Federal do Rio Grande do Sul, Departamento de Botânica, Av. Bento Gonçalves 9500, Prédio 43433, 91105–970 Porto Alegre, RS, Brasil
Jorge Luiz Waechter
Affiliation:
Universidade Federal do Rio Grande do Sul, Departamento de Botânica, Av. Bento Gonçalves 9500, Prédio 43433, 91105–970 Porto Alegre, RS, Brasil
*
1Corresponding author. Email: [email protected]

Extract

Hemiepiphytes comprise two major categories, those that begin their life cycle as epiphytes and later establish soil contact through long descendent roots (primary hemiepiphytes), and those that germinate in the soil and climb up using adherent roots, eventually becoming epiphytes after losing soil contact (secondary hemiepiphytes) (Putz & Holbrook 1986). In several features root-climbing lianas are similar to secondary hemiepiphytes, including adhesion by adventitious roots, ability to colonize host-trees of different sizes (Putz 1984), and colonization generally restricted to a single phorophyte, differing mainly in the retention of soil contact through strong stems.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

APG (ANGIOSPERM PHYLOGENY GROUP). 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of Linnean Society 141:399436.CrossRefGoogle Scholar
ATHREYA, V. R. 1999. Light or presence of host trees: which is more important for the strangler fig? Journal of Tropical Ecology 15:589603.CrossRefGoogle Scholar
BENZING, D. H. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 354 pp.CrossRefGoogle Scholar
DANIELS, J. D. & LAWTON, R. O. 1991. Habitat and host preferences of Ficus crassiuscula, a neotropical strangling fig of the lower-montane rain forest. Journal of Ecology 79:129141.CrossRefGoogle Scholar
EMBRAPA, . 1999. Sistema brasileiro de classificação de solos. Embrapa Produção de Informação, Brasília. 412 pp.Google Scholar
GENTRY, A. H. 1993. A field guide to the families and genera of woody plants of northwest South America. Conservation International, Washington, DC. 895 pp.Google Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
GOTELLI, N. J. & GRAVES, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.Google Scholar
HAMMER, Ø., HARPER, D. A. T. & RYAN, P. D. 2001. PAST: PAlaeontological STatistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:19.Google Scholar
KELLY, D. 1985. Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life histories. Journal of Biogeography 12:223241.CrossRefGoogle Scholar
LAMAN, T. G. 1996. Specialization for canopy position by hemiepiphytic Ficus species in a Bornean rain forest. Journal of Tropical Ecology 12:789803.CrossRefGoogle Scholar
MAGURRAN, A. E. 1988. Ecological diversity and its measurement. Croom Helm, London. 192 pp.CrossRefGoogle Scholar
MICHALOUD, G. & MICHALOUD-PELLETIER, S. 1987. Ficus hémiépiphytes (Moraceae) et arbres supports. Biotropica 19:125136.CrossRefGoogle Scholar
MORENO, J. A. 1961. Clima do Rio Grande do Sul. Secretaria da Agricultura, Porto Alegre. 42 pp.Google Scholar
PRÓSPERI, J., CABALLÉ, G. & CARAGLIO, Y. 2001. Lianas and hemiepiphytes: distribution, development, and adaptations.Selbyana 22:197212.Google Scholar
PUTZ, F. E. 1984. How trees avoid and shed lianas. Biotropica 16:1923.CrossRefGoogle Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1986. Notes on the natural history of hemiepiphytes. Selbyana 9:6169.Google Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1989. Strangler fig rooting habits and nutrient relations in the Llanos of Venezuela. American Journal of Botany 76:781788.CrossRefGoogle Scholar
SMITH, A. R., PRYER, K. M., SCHUETTPELZ, E., KORALL, P., SCHNEIDER, H. & WOLF, P. G. 2006. A classification for extant ferns. Taxon 55:705731.CrossRefGoogle Scholar
TING, I. J., HANN, J., HOLBROOK, N. M., PUTZ, F. E., STERNBERG, L. DA S. L., PRICE, D. & GOLDSTEIN, G. 1987. Photosynthesis in hemiepiphytic species of Clusia and Ficus. Oecologia 74:339346.CrossRefGoogle ScholarPubMed
TODZIA, C. 1986. Growth habits, host tree species, and density of hemiepiphytes on Barro Colorado Island, Panama. Biotropica 18:2227.CrossRefGoogle Scholar
VELOSO, H. P. & KLEIN, R. M. 1968. As comunidades e associações vegetais da mata pluvial do Sul do Brasil. VI. Agrupamentos arbóreos dos contra-fortes da Serra Geral situados ao sul da costa catarinense e ao norte da costa sul-riograndense. Sellowia 20:127180.Google Scholar
VELOSO, H. P., RANGEL FILHO, A. L. & LIMA, J. C. A. 1991. Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro. 124 pp.Google Scholar
WILLIAMS-LINERA, G. & LAWTON, R. O. 1995. The ecology of hemiepiphytes in forest canopies. Pp. 255283 in Lowman, M. D. & Nadkarni, N. M. (eds.). Forest canopies. Academic Press, San Diego.Google Scholar
ZAR, J. H. 1998. Biostatistical analysis. Prentice-Hall, Englewood. 663 pp.Google Scholar