Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T03:47:49.821Z Has data issue: false hasContentIssue false

Herbaceous monocot plant form and function along a tropical rain-forest light gradient: a reversal of dicot strategy

Published online by Cambridge University Press:  01 January 2009

Nathan G. Swenson*
Affiliation:
Center for Tropical Forest Science – Asia Program, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA

Extract

Whole plant form and function vary spectacularly across the seed plants. In recent years, plant evolutionary ecologists have begun to document this diversity on large geographic scales by analysing ‘functional traits’ that are indicative of whole plant performance across environmental gradients (Swenson & Enquist 2007, Wright et al. 2004). Despite the high degree of functional diversity in tropical forests, convergence in function does occur locally along successional or light gradients (Bazzaz & Pickett 1980, Swaine & Whitmore 1988).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BAZZAZ, F. A. & PICKETT, S. T. A. 1980. Physiological ecology of tropical succession: a comparative review. Annual Reviews in Ecology and Systematics 11:287310.CrossRefGoogle Scholar
BERRY, F. & KRESS, W. J. 1991. Heliconia: an identification guide. Smithsonian Press, Washington, DC. 344 pp.Google Scholar
COOLEY, A. M., REICH, A. & RUNDEL, P. W. 2004. Leaf support biomechanics of neotropical understory herbs. American Journal of Botany 91:573581.CrossRefGoogle ScholarPubMed
DOLPH, G. E. & DILCHER, D. L. 1980. Variation in leaf size with respect to climate in Costa Rica. Biotropica 12:9199.CrossRefGoogle Scholar
DOMINY, N. J., GRUBB, P. J., JACSON, R. V., LUCAS, P. W., METCALFE, D. J., SVENNING, J. C. & TURNER, I. M. 2008. In tropical lowland rainforests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Annals of Botany 101:13631377.CrossRefGoogle Scholar
FELSENSTEIN, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
GARNIER, E. & LAURENT, G. 1994. Leaf anatomy, specific mass and water content in congeneric and perennial grass species. New Phytologist 128:725736.CrossRefGoogle Scholar
GRUBB, P. J. & JACKSON, R. B. 2007. The adaptive value of young leaves being tightly folded or rolled on monocotyledons in tropical lowland rain forest: an hypothesis in two parts. Plant Ecology 192:317327.CrossRefGoogle Scholar
MAAS, P. J. M. 1972. Flora Neotropica: Monograph 8 Costoideae. The New York Botanical Garden Press, New York. 139 pp.Google Scholar
MAAS, P. J. M. 1977. Flora Neotropica: Monograph 18 Renealmia. The New York Botanical Garden Press, New York. 218 pp.Google Scholar
RUNDEL, P. W., SHARIFI, M. R., GIBSON, A. C. & ESLER, K. J. 1998. Structural and physiological adaptation to light environments in neotropical Heliconia (Heliconiaceae). Journal of Tropical Ecology 14:789801.CrossRefGoogle Scholar
SHIPLEY, B. 1995. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology 9:312319.CrossRefGoogle Scholar
STILES, F. G. 1975. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56:285301.CrossRefGoogle Scholar
SWAINE, M. D. & WHITMORE, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 5:8186.CrossRefGoogle Scholar
SWENSON, N. G. & ENQUIST, B. J. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany 94:451459.CrossRefGoogle ScholarPubMed
SWENSON, N. G. & ENQUIST, B. J. 2008. The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. American Journal of Botany 95:516519.CrossRefGoogle ScholarPubMed
WRIGHT, I. J., REICH, P. B., WESTOBY, M., ACKERLY, D. D., BARUCH, Z., BONGERS, F., CAVENDER-BARES, J., CHAPIN, F. S., CORNELISSEN, J. H. C., DIEMER, M., FLEXAS, J., GARNIER, E., GROOM, P. K., GULIAS, J., HIKOSAKA, K., LAMONT, B. B., LEE, T., LEE, W., LUSK, C., MIDGLEY, J. J., NAVA, N. L., NIINEMETS, U., OLEKSYN, J., OSADA, N., POORTER, H., POOT, P., PRIOR, L., PYANKOV, V. I., ROUMET, C., THOMAS, S. C., TJOELKER, M. G., VENEKLAAS, E. & VILLAR, R. 2004. The world-wide leaf economics spectrum. Nature 428:821827.CrossRefGoogle Scholar