Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T19:22:16.220Z Has data issue: false hasContentIssue false

Environmental factors associated with liana community assemblages in a tropical forest reserve, Ghana

Published online by Cambridge University Press:  24 September 2014

Patrick Addo-Fordjour*
Affiliation:
School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
Zakaria B. Rahmad
Affiliation:
School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia The Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, 11800 Pulau Pinang, Penang, Malaysia
*
1Corresponding author. Email: [email protected]; [email protected]

Abstract:

This study determined variation in liana diversity, composition and community structure in different topographic habitats, as well as the environmental factors associated with them in the Atewa Range Forest Reserve, Ghana. The above-mentioned liana assemblage attributes were examined in thirty 40 × 40-m plots, randomly demarcated within three topographic habitats at different average altitudes (hill bottom: 85.6 m asl, hill slope: 343 m asl, plateau: 641 m asl). Soil properties, altitude and slope angle were determined for the plots. Using multiple stepwise regression, non-metric multidimensional scaling analysis, and analysis of similarity, environmental factors that influenced the above-mentioned attributes of liana assemblages were determined. The findings revealed significant variation in liana diversity, composition and community structure among the topographic habitats. Liana species composition related with soil P, Mg and moisture, and altitude. Soil Mg and P associated positively with species composition in the hill-bottom habitat while altitude and soil moisture related negatively with it. A reverse trend occurred in the other habitats. Five environmental factors related significantly with liana diversity and community structure as follows – species richness: soil Ca and Mg, altitude; Shannon diversity: soil Ca, altitude; abundance: soil moisture and P, altitude; basal area: soil moisture, P.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADDO-FORDJOUR, P., RAHMAD, Z. B. & SHAHRUL, A. M. S. 2013a. Factors influencing liana community diversity, structure and habitat associations in a tropical hill forest, Malaysia. Plant Ecology and Diversity, doi: 10.1080/17550874.2013.782369.Google Scholar
ADDO-FORDJOUR, P., RAHMAD, Z. B., AMUI, J., PINTO, C. & DWOMOH, M. 2013b. Patterns of liana community diversity and structure in a tropical rainforest reserve, Ghana: effects of human disturbance. African Journal of Ecology 51:217227.CrossRefGoogle Scholar
ADDO-FORDJOUR, P., EL DUAH, P. & AGBESI, D. K. K. 2013c. Factors influencing liana species richness and structure following anthropogenic disturbance in a tropical forest, Ghana. ISRN Forestry vol. 2013, Art. ID 920370, doi: 10.1155/2013/920370.CrossRefGoogle Scholar
AHN, P. M. 1970. West African soils. Oxford University Press, Oxford. 332 pp.Google Scholar
ARBONNIER, M. 2004. Trees, shrubs and lianas of West African dry zones. CIRAD, MARGRAF Publishers, Montpellier. 574 pp.Google Scholar
BARIBAULT, T. W., KOBE, R. K. & FINLEY, A. O. 2012. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs 82:189203.CrossRefGoogle Scholar
BRAY, R. H. & KURTZ, L. T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59:3945.CrossRefGoogle Scholar
CHAO, A., COLWELL, R. K., LIN, C. W. & GOTELLI, N. J. 2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:11251133.CrossRefGoogle ScholarPubMed
CHETTRI, A., BARIK, S. K., PANDEY, H.N. & LYNGDOH, M. K. 2010. Liana diversity and abundance as related to microenvironment in three forest types located in different elevational ranges of the Eastern Himalayas. Plant Ecology and Diversity 3:175185.CrossRefGoogle Scholar
CHUYONG, G. B., KENFACK, D., HARMS, K. E., THOMAS, D. W., CONDIT, R. & COMITA, L. S. 2011. Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology 212:13631374.CrossRefGoogle Scholar
COTTAM, G. & CURTIS, J. T. 1956. The use of distance measurement in phytosociological sampling. Ecology 37:451460.CrossRefGoogle Scholar
CUNNINGHAM, A. B. 2001. Applied ethnobotany: people, wild plant use and conservation. Earthscan, London. 295 pp.Google Scholar
DEWALT, S. J., SCHNITZER, S. A. & DENSLOW, J. S. 2000. Density and diversity of lianas along a chronosequence in a Central Panamanian lowland forest. Journal of Tropical Ecology 16:119.CrossRefGoogle Scholar
DEWALT, S. J., ICKES, K., NILUS, R., HARMS, K. E. & BURSLEM, D. F. R. P. 2006. Liana habitat associations and community structure in a Bornean lowland tropical forest. Plant Ecology 186:203216.CrossRefGoogle Scholar
EWANGO, C. E. N. 2010. The liana assemblage of a Congolian rainforest: diversity, structure and dynamics. PhD Thesis, Wageningen University, the Netherlands.Google Scholar
GENTRY, A. H. 1991. The distribution and evolution of climbing plants. Pp. 349 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
HAMMER, Ø., HARPER, D. A. T. & RYAN, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.Google Scholar
HAWTHORNE, W. D. & JONGKIND, C. 2006. Woody plants of western African forests: a guide to the forest trees, shrubs and lianes from Senegal to Ghana. Royal Botanic Gardens, Kew. 1023 pp.Google Scholar
HOMEIER, J., ENGLERT, F., LEUSCHNER, C., WEIGELT, P. & UNGER, M. 2010. Factors controlling the abundance of lianas along an altitudinal transect of tropical forests in Ecuador. Forest Ecology and Management 259:13991405.CrossRefGoogle Scholar
IBARRA-MANRÍQUEZ, G. & MARTÍNEZ-RAMOS, M. 2002. Landscape variation of liana communities in a Neotropical rain forest. Plant Ecology 160:91112.CrossRefGoogle Scholar
JONES, J. B. 1991. Kjeldahl method for nitrogen determination. MicroMacro Publishing, Athens. 79 pp.Google Scholar
JONGKIND, C. C. 2005. Checklist of climber species in Upper Guinea. Pp. 231264 in Bongers, F., Parren, M. P. E. & Traoré, D. (eds.). Forest climbing plants of West Africa: diversity, ecology and management. CAB International, Wallingford.CrossRefGoogle Scholar
KENNEN, J. G. 2005. Effects of landscape change on fish assemblage structure in a rapidly growing metropolitan area in North Carolina, USA. American Fisheries Society Symposium 47:3952.Google Scholar
KÉRY, M., ROYLE, J. A., PLATTNER, M. & DORAZIO, R. M. 2009. Species richness and occupancy estimation in communities subject to temporary emigration. Ecology 90:12791290.CrossRefGoogle ScholarPubMed
KÖRNER, C. 2007. The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22:569574.CrossRefGoogle ScholarPubMed
LAURANCE, W. F., PÉREZ-SALICRUP, D., DELAMÔNICA, P., FEARNSIDE, P. M., D’ANGELO, S., JEROZOLINSKI, A., POHL, L. & LOVEJOY, T. E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105116.CrossRefGoogle Scholar
LERTPANICH, K. & BROCKELMAN, W. Y. 2003. Lianas and environmental factors in the Mo Singto Biodiversity Research Plot, Khao Yai National Park, Thailand. Natural History Journal of Chulalongkorn University 3:717.Google Scholar
LOOKINGBILL, T. R. & URBAN, D. L. 2005. Gradient analysis, the next generation: towards more plant-relevant explanatory variables. Canadian Journal of Forest Research 35:17441753.CrossRefGoogle Scholar
MACÍA, M. J., RUOKOLAINEN, K., TUOMISTO, H., QUISBERT, J. & CALA, V. 2007. Congruence between floristic patterns of trees and lianas in a southwest Amazonian rain forest. Ecography 30:561577.CrossRefGoogle Scholar
MALIZIA, A., GRAU, H. R. & LICHSTEIN, J. W. 2010. Soil phosphorus and disturbance influence liana communities in a subtropical montane forest. Journal of Vegetation Science 21:551560.CrossRefGoogle Scholar
MCCULLOUGH, J., ALONSO, L. E., NASKRECKI, P., WRIGHT, H. E. & OSEI-OWUSU, Y. (eds.) 2007. A rapid biological assessment of the Atewa Range Forest Reserve, Eastern Ghana. RAP Bulletin of Biological Assessment 47. Conservation International, Arlington. 194 pp.CrossRefGoogle Scholar
NASKRECKI, P. & ALONSO, L. (eds.) 2007. Biodiversity in the Atewa Range Forest Reserve, Ghana. Rapid Assessment Program. Conservation International, Arlington. 28 pp.Google Scholar
NURFAZLIZA, K., NIZAM, M. S. & SUPARDI, M. N. N. 2012. Association of liana communities with their soil properties in a lowland forest of Negeri Sembilan, Peninsular Malaysia. Sains Malaysiana 41:679690.Google Scholar
PARTHASARATHY, N., MUTHURAMKUMAR, S. & REDDY, M. S. 2004. Patterns of liana diversity in tropical evergreen forests of peninsular India. Forest Ecology and Management 190:1531.CrossRefGoogle Scholar
PHILLIPS, O. L., MARTINEZ, R. V., MENDOZA, A. M., BAKER, T. R. & VARGAS, P. N. 2005. Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:12501258.CrossRefGoogle Scholar
POORTER, L., BONGERS, F., KOUAMÉ, F. N. & HAWTHORNE, W. D. (eds.) 2004. Biodiversity of West African forests: an ecological atlas of woody plant species. CAB International, Wallingford. 528 pp.CrossRefGoogle Scholar
PUTZ, F. E. 1983. Liana biomass and leaf area of “tierra firme” forest in the Rio Negro basin, Venezuela. Biotropica 15:185189.CrossRefGoogle Scholar
PUTZ, F. E. & CHAI, P. 1987. Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. Journal of Ecology 75:523531.CrossRefGoogle Scholar
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.CrossRefGoogle ScholarPubMed
SCHNITZER, S. A. & BONGERS, F. 2011. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters 14:397406.CrossRefGoogle ScholarPubMed
SWAINE, M. D. & GRACE, J. 2007. Lianas may be favoured by low rainfall: evidence from Ghana. Plant Ecology 192:271276.CrossRefGoogle Scholar
VAN DER HEIJDEN, G. M. F. & PHILLIPS, O. L. 2008. What controls liana success in Neotropical forests? Global Ecology and Biogeography 17:372383.CrossRefGoogle Scholar
VANDECAR, K. L., LAWRENCE, D. & CLARK, D. 2011. Phosphorus sorption dynamics of anion exchange resin membranes in tropical rain forest soils. Soil Science Society of America Journal 75:15201529.CrossRefGoogle Scholar
VONLANTHEN, C. M., BÜHLER, A., VEIT, H., KAMMER, P. M. & EUGSTER, W. 2006. Alpine plant communities: a statistical assessment of their relation to microclimatological, pedological, geomorphological, and other factors. Physical Geography 27:137154.CrossRefGoogle Scholar
WALTHER, B. A. & MORAND, S. 1998. Comparative performance of species richness estimation methods. Parasitology 116:395405.CrossRefGoogle ScholarPubMed
YUAN, C., LIU, W., TANG, C. Q. & LI, X. 2009. Species composition, diversity, and abundance of lianas in different secondary and primary forests in a subtropical mountainous area, SW China. Ecological Research 24:13611370.CrossRefGoogle Scholar