Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T23:21:29.085Z Has data issue: false hasContentIssue false

Effects of disturbance and altitude on soil seed banks of tropical montane forests

Published online by Cambridge University Press:  08 November 2013

Denis Lippok*
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, D-06108 Halle (Saale), Germany
Florian Walter
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, D-06108 Halle (Saale), Germany
Isabell Hensen
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, D-06108 Halle (Saale), Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
Stephan G. Beck
Affiliation:
National Herbarium of Bolivia, UMSA, Campus Universitario, Cota Cota, La Paz, Bolivia
Matthias Schleuning
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Am Kirchtor 1, D-06108 Halle (Saale), Germany Biodiversity and Climate Research Centre (BiK-F) and Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
*
1Corresponding author. Email: [email protected]

Abstract:

Vast areas of tropical forests have been deforested by human activities, resulting in landscapes comprising forest fragments in matrices of deforested habitats. Soil seed banks (SSB) are essential sources for the regeneration of tropical forests after disturbance. In a fragmented montane landscape in the Bolivian Andes, we investigated SSB in three different habitat types that were associated with different degrees of disturbance, i.e. in forest interior, at forest edges and in deforested habitats. Sampling of habitats was replicated at six sites ranging in altitude from 1950 to 2450 m asl. We extracted seeds from dried soil samples by sieving, classified seeds into morphospecies and size classes, and characterized SSB in terms of density, species richness and composition. We tested effects of disturbance (i.e. habitat type) and altitude on SSB characteristics. Overall, small seeds (<1 mm) dominated SSB (81% of sampled seeds). Seed density and species richness were lowest in deforested habitats, especially in large seeds and distant from adjacent forests (≥20 m), while small-seeded species were most numerous near forest margins. Species turnover between habitats was high. Altitude altered the composition of SSB, but had no effects on seed density and species richness. We conclude that the potential of SSB for natural regeneration of deforested habitats is low and decreases with increasing distance from forest remnants and that forest edges may be eventually invaded by small-seeded species from deforested habitats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIDE, T. M. & CAVELIER, J. 1994. Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecology 2:219229.CrossRefGoogle Scholar
AIDE, T. M., ZIMMERMAN, J. K., HERRERA, L., ROSARIO, M. & SERRANO, M. 1995. Forest recovery in abandoned tropical pastures in Puerto Rico. Forest Ecology and Management 77:7786.CrossRefGoogle Scholar
BAIDER, C., TABARELLI, M. & MANTOVANI, W. 2001. The soil seed bank during Atlantic Forest regeneration in Southeast Brazil. Revista Brasileira de Biologia 61:3544.CrossRefGoogle ScholarPubMed
BECK, E., BENDIX, J., KOTTKE, I., MAKESCHIN, F. & MOSANDL, R. 2008. Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin. 526 pp.CrossRefGoogle Scholar
CASTILLO, L. S. & STEVENSON, P. R. 2010. Relative importance of seed-bank and post-disturbance seed dispersal on early gap regeneration in a Colombian Amazon Forest. Biotropica 42:488492.CrossRefGoogle Scholar
CAVIERES, L. A. & ARROYO, M. T. K. 2001. Persistent soil seed banks in Phacelia secunda (Hydrophyllaceae): experimental detection of variation along an altitudinal gradient in the Andes of central Chile (33° S). Journal of Ecology 89:3139.CrossRefGoogle Scholar
COSTANZA, R., D’ARGE, R., DE GROOT, R., FARBER, S., GRASSO, M., HANNON, B., LIMBURG, K., NAEEM, S., O’NEILL, R. V. & PARUELO, J. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253260.CrossRefGoogle Scholar
CUBIÑA, A. & AIDE, T. M. 2001. The effect of distance from forest edge on seed rain and soil seed bank in a tropical pasture. Biotropica 33:260267.CrossRefGoogle Scholar
DALLING, J. W. & HUBBELL, S. P. 2002. Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology 90:557568.CrossRefGoogle Scholar
ESPINOSA, C. I., LUZURIAGA, A. L., DE LA CRUZ, M., MONTERO, M. & ESCUDERO, A. 2013. Co-occurring grazing and climate stressors have different effects on the total seed bank when compared to the persistent seed bank. Journal of Vegetation Science. doi: 10.1111/jvs.12043.CrossRefGoogle Scholar
EWEL, J., BERISH, C., BROWN, B., PRICE, N. & RAICH, J. 1981. Slash and burn impacts on a Costa Rican wet forest site. Ecology 62:816829.CrossRefGoogle Scholar
FAO 2011. State of the world's forests 2011. Food and Agriculture Organization of the United Nations (FAO), Rome. 164 pp.Google Scholar
FOSTER, S. & JANSON, C. H. 1985. The relationship between seed size and establishment conditions in tropical woody plants. Ecology 66:773780.CrossRefGoogle Scholar
FUNES, G., BASCONCELO, S., DÍAZ, S. & CABIDO, M. 1999. Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Science Research 9:341345.CrossRefGoogle Scholar
FUNES, G., BASCONCELO, S., DÍAZ, S. & CABIDO, M. 2003. Seed bank dynamics in tall-tussock grasslands along an altitudinal gradient. Journal of Vegetation Science 14:253258.CrossRefGoogle Scholar
GARWOOD, N. C. 1989. Tropical soil seed banks: a review. Pp. 149208 in Leck, M. A., Parker, T. V. & Simpson, R. L. (eds.). Ecology of soil seed banks. Academic Press, London.CrossRefGoogle Scholar
GHORBANI, J., LE DUC, M. G., MCALLISTER, H. A., PAKEMAN, R. J. & MARRS, R. H. 2006. Effects of the litter layer of Pteridium aquilinum on seed banks under experimental restoration. Applied Vegetation Science 9:127136.CrossRefGoogle Scholar
HOLL, K. D. 1998. Do bird perching structures elevate seed rain and seedling establishment in abandoned tropical pasture? Restoration Ecology 6:253261.CrossRefGoogle Scholar
HOPKINS, M. S. & GRAHAM, A. W. 1983. The species composition of soil seed banks beneath lowland tropical rainforests in North Queensland, Australia. Biotropica 15:9099.CrossRefGoogle Scholar
INGLE, N. 2003. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation. Oecologia 134:251261.CrossRefGoogle ScholarPubMed
KAPPELLE, M., GEUZE, T., LEAL, M. E. & CLEEF, A. M. 1996. Successional age and forest structure in a Costa Rican upper montane Quercus forest. Journal of Tropical Ecology 12:681698.CrossRefGoogle Scholar
KILLEEN, T., SILES, T., SORIA, L. & CORREA, L. 2005. Estratificación de vegetación y cambio de uso de suelo en los Yungas y Alto Beni de La Paz. Ecologia en Bolivia 40:3269.Google Scholar
LAURANCE, W. F., NASCIMENTO, H. E. M., LAURANCE, S. G., ANDRADE, A. C., FEARNSIDE, P. M., RIBEIRO, J. E. L. & CAPRETZ, R. L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469482.CrossRefGoogle ScholarPubMed
LEISHMAN, M. R., WESTOBY, M. & JURADO, E. 1995. Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83:517530.CrossRefGoogle Scholar
LEISHMAN, M. R., WRIGHT, I. J., MOLES, A. T. & WESTOBY, M. 2000. The evolutionary ecology of seed size. 3157 in Fenner, M. (ed.). Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford.CrossRefGoogle Scholar
LIN, L. & CAO, M. 2009. Edge effects on soil seed banks and understory vegetation in subtropical and tropical forests in Yunnan, SW China. Forest Ecology and Management 257:13441352.CrossRefGoogle Scholar
LINDNER, A. 2009. A rapid assessment approach on soil seed banks of Atlantic forest sites with different disturbance history in Rio de Janeiro, Brazil. Ecological Engineering 35:829835.CrossRefGoogle Scholar
LIPPOK, D., BECK, S. G., RENISON, D., GALLEGOS, S. C., SAAVEDRA, F. V., HENSEN, I. & SCHLEUNING, M. 2013. Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. Forest Ecology and Management 295:6976.CrossRefGoogle Scholar
LIPPOK, D., BECK, S. G., RENISON, D., HENSEN, I., APAZA, A. & SCHLEUNING, M. Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science, in press.Google Scholar
LÓPEZ-TOLEDO, L. & MARTÍNEZ-RAMOS, M. 2011. The soil seed bank in abandoned tropical pastures: source of regeneration or invasion? Revista Mexicana de Biodiversidad 82:663678.CrossRefGoogle Scholar
MARKL, J. S., SCHLEUNING, M., FORGET, P. M., JORDANO, P., LAMBERT, J. E., TRAVESET, A., WRIGHT, S. J. & BÖHNING-GAESE, K. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conservation Biology 26:10721081.CrossRefGoogle ScholarPubMed
MELO, F. P. L., LEMIRE, D. & TABARELLI, M. 2007. Extirpation of large-seeded seedlings from the edge of a large Brazilian Atlantic forest fragment. Ecoscience 14:124129.CrossRefGoogle Scholar
MENKE, S., BÖHNING-GAESE, K. & SCHLEUNING, M. 2012. Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos 121:15531566.CrossRefGoogle Scholar
MILLER, P. M. 1999. Effects of deforestation on seed banks in a tropical deciduous forest of western Mexico. Journal of Tropical Ecology 15:179188.CrossRefGoogle Scholar
MOLINA-CARPIO, J. 2005. Régimen de precipitación en la cuenca de Huarinilla-Cotapata, La Paz-Bolivia. Ecología en Bolivia 40:4355.Google Scholar
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.CrossRefGoogle ScholarPubMed
MYSTER, R. 2004. Post-agricultural invasion, establishment, and growth of Neotropical trees. The Botanical Review 70:381402.CrossRefGoogle Scholar
OLIVEIRA, M. A., GRILLO, A. S. & TABARELLI, M. 2004. Forest edge in the Brazilian Atlantic forest: drastic changes in tree species assemblages. Oryx 38:389394.CrossRefGoogle Scholar
ORTEGA, M., LEVASSOR, C. & PECO, B. 1997. Seasonal dynamics of Mediterranean pasture seed banks along environmental gradients. Journal of Biogeography 24:177195.CrossRefGoogle Scholar
QUINTANA-ASCENCIO, P. F., GONZALEZ-ESPINOSA, M., RAMIREZ-MARCIAL, N., DOMINGUEZ-VAZQUEZ, G. & MARTINEZ-ICO, M. 1996. Soil seed banks and regeneration of tropical rain forest from Milpa fields at the Selva Lacandona, Chiapas, Mexico. Biotropica 28:192209.CrossRefGoogle Scholar
SANTOS, B. A., PERES, C. A., OLIVEIRA, M. A., GRILLO, A., ALVES-COSTA, C. P. & TABARELLI, M. 2008. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biological Conservation 141:249260.CrossRefGoogle Scholar
SAUNDERS, D. A., HOBBS, R. J. & MARGULES, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5:1832.CrossRefGoogle Scholar
THOMPSON, K. 1978. The occurrence of buried viable seeds in relation to environmental gradients. Journal of Biogeography 5:425430.CrossRefGoogle Scholar
THOMPSON, K., BAND, S. R. & HODGSON, J. G. 1993. Seed size and shape predict persistence in soil. Functional Ecology 7:236241.CrossRefGoogle Scholar
WAGNER, M. & MITSCHUNAS, N. 2008. Fungal effects on seed bank persistence and potential applications in weed biocontrol: a review. Basic and Applied Ecology 9:191203.CrossRefGoogle Scholar
WARR, S. J., THOMPSON, K. & KENT, M. 1993. Seed banks as a neglected area of biogeographic research: a review of literature and sampling techniques. Progress in Physical Geography 17:329347.CrossRefGoogle Scholar
WHITMORE, T. C. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70:536538.CrossRefGoogle Scholar
WILLIAMS-LINERA, G., DOMÍNGUEZ-GASTELÚ, V. & GARCÍA-ZURITA, M. E. 1998. Microenvironment and floristics of different edges in a fragmented tropical rainforest. Conservation Biology 12:10911102.CrossRefGoogle Scholar
WUNDERLE, J. M. 1997. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management 99:223235.CrossRefGoogle Scholar
YOUNG, K. R., EWEL, J. J. & BROWN, B. J. 1987. Seed dynamics during forest succession in Costa Rica. Plant Ecology 71:157173.CrossRefGoogle Scholar
ZIMMERMAN, J. K., PASCARELLA, J. B. & AIDE, T. M. 2000. Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restoration Ecology 8:350360.CrossRefGoogle Scholar