Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T11:06:39.728Z Has data issue: false hasContentIssue false

Effect of fire on the germination of spores of Pteridium caudatum, an invasive fern

Published online by Cambridge University Press:  28 May 2010

María del Rosario Ramírez Trejo*
Affiliation:
Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-535, 09340 México, D. F.
Blanca Pérez-García*
Affiliation:
Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-535, 09340 México, D. F.
Diego R. Pérez-Salicrup
Affiliation:
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Código Postal 58190, Morelia, Michoacán, México
Alma Orozco-Segovia
Affiliation:
Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Circuito Exterior, Ciudad Universitaria, México, D.F.
*
1Corresponding authors. Email: [email protected], [email protected]
1Corresponding authors. Email: [email protected], [email protected]

Abstract:

Pteridium caudatum is a fern that frequently invades burnt areas in the Yucatán Peninsula and other neotropical sites. While post-fire regeneration of this fern apparently occurs mainly by vegetative means, little is known about the role of its spores in post-fire regeneration and in colonization of newly invaded fields. Central to these questions is whether bracken fern spores maintain their viability after fires. Here we experimentally evaluate the effect of fire-induced temperatures on Pteridium caudatum spore germination. We used 1200-cm3 blocks containing a constant fuel load of 47.4 g of litter, in which we placed spores at three different depths. The blocks were then ignited, and temperatures at each depth were monitored at 1-min intervals for 2 h. One day after the experimental fires, spores were dug out and cultured at 25 °C and 12-h light/dark cycles. Soil temperatures decreased significantly in relation to depth during fires. Spores on the surface were severely affected by fire, while those buried at 1 and 3 cm showed 77% germination. Germination in unburned controls was 86%. Our results suggest that during fires, Pteridium caudatum spores buried a few centimetres below the surface have a high percentage of viability, which could explain the rapid establishment of this species in burnt fields.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGEE, J. K. 1993. Fire ecology of Pacific Northwest Forests. Island Press, Washington DC. 493 pp.Google Scholar
ALLEN, E. B., VIOLI, H. A., ALLEN, M. F. & GÓMEZ-POMPA, A. 2003. Restoration of tropical seasonal forest in Quintana Roo. Pp. 587593 in Gómez-Pompa, A., Allen, M. F., Fedick, S. L. & Jiménez-Osornio, J. J. (eds.). The lowland Maya area. Three millennia at the human–wildland interface. The Haworth Press, New York.Google Scholar
AULD, T. D. 1986. Population dynamics of the shrub Acacia suaveolens (Sm.) Willd.: fire and the transition to seedlings. Australian Journal of Ecology 11:373385.CrossRefGoogle Scholar
AULD, T. D. & O'CONNELL, M. A. 1991. Predicting patterns of post-fire germination in 35 eastern Australian Fabaceae. Australian Journal of Ecology 12:139151.CrossRefGoogle Scholar
BAEZA, M. J. & VALLEJO, V. R. 2006. Ecological mechanisms involved in dormancy breakage in Ulex parviflorus seeds. Plant Ecology 183:191205.CrossRefGoogle Scholar
BASKIN, C. & BASKIN, M. 1998. Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, London. 666 pp.Google Scholar
BOND, W. J., LE ROUX, D. & ERNTZEN, R. 1990. Fire intensity and regeneration of myrmecochorous Proteaceae. South African Journal of Botany 56:326330.CrossRefGoogle Scholar
BRADSTOCK, R. A. & AULD, T. D. 1995. Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. Journal of Applied Ecology 32:7684.CrossRefGoogle Scholar
BRADSTOCK, R. A., AULD, T. D., ELLIS, M. E. & COHN, J. S. 1992. Soil temperatures during bushfires in semiarid, malle shrublands. Australian Journal of Ecology 17:433440.CrossRefGoogle Scholar
BUSSE, M. D., HUBBERT, K. R., FIDDLER, G. O., SHESTACK, C. J. & POWERS, R. F. 2005. Lethal soil temperatures during burning of masticated forest residues. International Journal of Wildland Fire 14:267276.CrossRefGoogle Scholar
CAUTINHO, L. M. 1978. Aspectos ecológicos do fogo no cerrado. I – A temperatura do solo durante as queimadas. Revista Brasileira de Botânica 2:97101.Google Scholar
COHEN, A. L., SINGHAKUMARA, B. M. P. & ASHTON, P. M. S. 1995. Releasing rain forest succession: a case study in the Dicranopteris linearis fernlands of Sri Lanka. Restoration Ecology 3:261270.CrossRefGoogle Scholar
CONWAY, E. 1949. The autoecology of the bracken [Pteridium aquilinum (L.) Kuhn]. The germination of the spore, the development of the prothallus and the young sporophyte. Proceedings of the Royal Society of Edinburgh 63:325343.Google Scholar
CONWAY, E. 1957. Spore production in bracken [Pteridium aquilinum (L.) Kuhn]. Journal of Ecology 45:273284.CrossRefGoogle Scholar
COOPER-DRIVER, G. 1990. Defense strategies in bracken (Pteridium aquilinum (L.) Kuhn). Annals of the Missouri Botanical Garden 77:281286.CrossRefGoogle Scholar
DYER, A. F. 1979. The culture of fern gametophytes for experimental investigation. Pp. 253305 in Dyer, A. F. (ed.). The experimental biology of ferns. Academic Press, London.Google Scholar
DYER, A. F. 1989. Does bracken spread by spores? Pp. 3542 in Thompson, J. A. & Smith, R. T. (eds.). Bracken biology and management. Australian Institute of Agricultural Science, Occasional Publication No. 40.Google Scholar
FLETCHER, W. W. & KIRKWOOD, R. C. 1979. The bracken fern [Pteridium aquilinum (L.) Kuhn], its biology and control. Pp. 591636 in Dyer, A. F. (ed.). The experimental biology of ferns. Academic Press, London.Google Scholar
GARWOOD, N. C. 1983. Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs 53:159181.CrossRefGoogle Scholar
GASHAW, M. & MICHELSEN, A. 2002. Influence of heat shock on seed germination of plants from regularly burnt savannah woodlands and grasslands in Ethiopia. Plant Ecology 159:8393.CrossRefGoogle Scholar
GILL, A. M. 1981. Fire adaptative traits of vascular plants. Pp. 208–230 in Mooney, H. A., Bonnicksen, T. M., Christensen, N. L., Lotan, J. E. & Reiners, W. A. (eds.). Fire regimes and ecosystem properties. U.S. Forestry Service General Technical Report WO-26, USA.Google Scholar
GIMENO-GARCÍA, E., ANDREU, V. & RUBIO, J. L. 2004. Spatial patterns of soil temperatures during experimental fires. Geoderma 118:1738.CrossRefGoogle Scholar
GLIESSMAN, S. R. 1978. The establishment of bracken following fire in tropical habitats. American Fern Journal 68:4144.CrossRefGoogle Scholar
GLIESSMAN, S. R. & MULLER, C. H. 1976. Allelopathy in a broad spectrum of environments as illustrated by bracken. Botanical Journal of the Linnean Society 73:95104.CrossRefGoogle Scholar
GREGORY, P. H. & HIRST, J. M. 1957. The summer air-spora at Rothamsted in 1952. Journal of General Microbiology 17:135152.CrossRefGoogle ScholarPubMed
HODGKINSON, K. C. 1991. Shrub recruitment response to intensity and season of fire in a semi-arid woodland. Journal of Applied Ecology 28:6070.CrossRefGoogle Scholar
KEELEY, J. E. 1977. Seed production, seed populations in soil and seedling production after fire for two congeneric pairs of sprouting and nonsprouting chaparral shrubs. Ecology 58:820829.CrossRefGoogle Scholar
KEELEY, J. E. & ZEDLER, P. H. 1978. Reproduction of chaparral shrubs after fire: a comparison of sprouting and seedling strategies. American Midland Naturalist 99:142161.CrossRefGoogle Scholar
KEELEY, J. E., MORTON, B. A., PEDROSA, A. & TROTTER, P. 1985. The role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. Journal of Ecology 73:445458.CrossRefGoogle Scholar
KENNARD, D. K. & GHOLZ, H. L. 2001. Effects of high- and low-intensity fires on soil properties and plant growth in Bolivian dry forest. Plant & Soil 234:119129.CrossRefGoogle Scholar
KLEKOWSKI, E. J. 1969. Reproductive biology of the Pteridophyta. II. Theoretical considerations. Botanical Journal of the Linnean Society 62:347359.CrossRefGoogle Scholar
LONSDALE, W. M. & MILLER, I. L. 1993. Fire as a management tool for a tropical woody weed: Mimosa pigra in Northern Australia. Journal of Environmental Management 39:7787.CrossRefGoogle Scholar
MASSMAN, W. J., FRANK, J. M., SHEPPERD, W. D. & PLATTEN, M. J. 2003. In situ soil temperature and heat flux measurements during controlled surface burns at southern Colorado forest site. USDA Forest Service Proceedings RMRS-P-29;6987.Google Scholar
MILLER, J. H. 1968. Fern gametophytes as experimental material. The Botanical Review 34:361440.CrossRefGoogle Scholar
MILLER, P. M. 1999. Effects of deforestation on seed banks in a tropical decidous forest of western Mexico. Journal of Tropical Ecology 15:179188.CrossRefGoogle Scholar
MIRANDA, A. C., MIRANDA, H. S., OLIVEIRA, I. F. & FERREIRA, B. 1993. Soil and air temperatures during prescribed cerrado fires in Central Brazil. Journal of Tropical Ecology 9:313320.CrossRefGoogle Scholar
MORENO, J. M. & OECHEL, W. C. 1991a. Fire intensity effects on germination of shrubs and herbs in southern California chaparral. Ecology 72:19932004.CrossRefGoogle Scholar
MORENO, J. M. & OECHEL, W. C. 1991b. Fire intensity and herbivory effects on postfire resprouting of Adenostoma fasciculatum in southern California chaparral. Oecologia 85:429433.CrossRefGoogle ScholarPubMed
ODION, D. C. & DAVIS, F. W. 2000. Fire, soil heating and the formation of vegetation patterns in chaparral. Ecological Monographs 70:149169.CrossRefGoogle Scholar
OTTERSTROM, S. M., SCHWARTZ, M. W. & VELAZQUEZ-ROCHA, I. 2006. Responses to fire in selected tropical tropical dry forest trees. Biotropica 38:592598.CrossRefGoogle Scholar
PAGE, C. N. 1976. The taxonomy and phytogeography of bracken – a review. Botanical Journal of the Linnean Society 73:134.CrossRefGoogle Scholar
PAGE, C. N. 1982. The history and spread of bracken in Britain. Proceedings of the Royal Society of Edinburgh 81:310.Google Scholar
PAGE, C. N. 1986. The strategies of bracken as a permanent ecological opportunist. Pp. 173181 in Smith, T. & Taylor, J. A. (eds.). Bracken, ecology, land use and control technology. The Proceedings of the International Conference Bracken '85. Parthenon Publishing, Carnforth.Google Scholar
PÉREZ-GARCÍA, B. & RIBA, R. 1982. Germinación de esporas de Cyatheaceae bajo diversas temperaturas. Biotropica 14:281287.CrossRefGoogle Scholar
PICKUP, M., MCDOUGALL, K. M. & WHELAN, R. J. 2003. Fire and flood: soil-stored seed bank and germination ecology in the endangered Carrington Falls Grevillea rivularis, Proteaceae. Austral Ecology 28:128136.CrossRefGoogle Scholar
PORTLOCK, C. C., SHEA, S. R., MAJER, J. D. & BELL, T. 1990. Stimulation of germination of Acacia pulchella: laboratory basis for forest management options. Journal of Applied Ecology 27:319324.CrossRefGoogle Scholar
RAGHAVAN, V. 1980. Cytology, physiology and biochemistry of germination of fern spores. International Review of Cell and Molecular Biology 62:69118.Google Scholar
RAMÍREZ-TREJO, M. R., PÉREZ-GARCÍA, B. & OROZCO-SEGOVIA, A. 2004. Analysis of fern spore banks from the soil of three vegetation types in the central region of Mexico. American Journal of Botany 91:682688.CrossRefGoogle ScholarPubMed
RANAL, M. A. 1999. Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. American Fern Journal 89:149158.CrossRefGoogle Scholar
READ, L. & LAWRENCE, D. 2003. Recovery of biomass following shifting cultivation in dry tropical forests of the Yucatán. Ecological Applications 13:8597.CrossRefGoogle Scholar
RICO-GRAY, V. & GARCÍA-FRANCO, J. G. 1992. Vegetation and soil seed bank of successional stages in tropical lowland deciduous forest. Journal of Vegetation Science 3:617624.CrossRefGoogle Scholar
RUSSELL, A. E., RAICH, J. W. & VITOUSEK, P. M. 1998. The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii. Journal of Ecology 86:765779.CrossRefGoogle Scholar
SCHIMMEL, J. & GRANSTRÖM, A. 1996. Fire severity and vegetation response in the boreal Swedish forest. Ecology 77:14361450.CrossRefGoogle Scholar
SCHNEIDER, L. C. 2006. Invasive species and land use: the effect of land management practices on bracken fern invasion in the region of Calakmul, Mexico. Journal of Latin American Geography 5:91107.CrossRefGoogle Scholar
SCHNEIDER, L. C. 2008. Plant invasions in an agricultural frontier: linking satellite, ecological and household survey data. Pp. 117142 in Millington, A. & Jepson, W. (eds.). Land change science in the tropics: changing agricultural landscapes. Springer Science, New York.Google Scholar
SCHNEIDER, L. C. & FERNANDO, D. N. 2010. An untidy cover: invasion of bracken fern in the shifting cultivation systems of Southern Yucatán, Mexico. Biotropica 42:4148.CrossRefGoogle Scholar
SLOCUM, M., AIDE, T. M., ZIMMERMAN, J. K. & NAVARRO, L. 2004. Natural regeneration of subtropical montane forest after clearing fern thickets in the Dominican Republic. Journal of Tropical Ecology 20:483486.CrossRefGoogle Scholar
SOKAL, R. R. & ROHLF, F. J. 1995. Biometry. (Third edition). Freeman, New York. 887 pp.Google Scholar
TAYLOR, J. A. 1990. The bracken problem: a global perspective. Pp. 319 in Thompson, J. & Smith, R. T. (eds.). Bracken biology and management. Australian Institute of Agricultural Science, Sydney.Google Scholar
THANOS, C. A. & GOERGHIOU, K. 1988. Ecophysiology of fire stimulated germination in Cistus incanus ssp. creticus (L.) Heywood and C. salvifolius L. Plant, Cell and Environment 11:841849.CrossRefGoogle Scholar
WALKER, L. R. 1994. Effects of fern thickets on woodland development on landslides in Puerto Rico. Journal of Vegetation Science 5:525532.CrossRefGoogle Scholar
WALKER, L. R. & BONETA, W. 1995. Plant and soil responses to fire on a fern-covered landslide in Puerto Rico. Journal of Tropical Ecology 11:473479.CrossRefGoogle Scholar
WHELAN, R. J. 1995. The ecology of fire. Cambridge University Press, Cambridge. 314 pp.Google Scholar
WILLIAMS, P. R., CONGDON, R. A., GRICE, A. C. & CLARKE, P. 2004. Soil temperature and depth of legume germination during early and late dry season fires in a tropical eucalypt savanna of north-eastern Australia. Austral Ecology 29:258263.CrossRefGoogle Scholar
ZABKIEWICZ, J. A. & GASKIN, R. E. 1978. Effects of fire on gorse seeds. Pp. 4752 in Hartley, M. J. (ed.). Proceedings of the 31st New Zealand Weed & Pest Control Conference. The New Zealand Weed and Pest Control Society Inc., Palmerston North, New Zealand.Google Scholar
ZAMMIT, C. A. & ZEDLER, P. H. 1988. The influence of dominant shrubs, fire and time since fire on soil seed banks in mixed chaparral. Vegetatio 75:175187.CrossRefGoogle Scholar
ZIMMERMAN, J. K., PASCARELLA, J. B. & AIDE, T. M. 2000. Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restoration Ecology 8:350360.CrossRefGoogle Scholar