Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T05:52:06.810Z Has data issue: false hasContentIssue false

Nitrogen cycling in a Venezuelan tropical seasonally flooded forest: soil nitrogen mineralization and nitrification

Published online by Cambridge University Press:  10 July 2009

Barrios E.
Affiliation:
Centro de Ecología y Ciencias Ambientales, Institute Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas 1020A, Venezuela
Herrera R.
Affiliation:
Centro de Ecología y Ciencias Ambientales, Institute Venezolano de Investigaciones Científicas (IVIC), Apdo. 21827, Caracas 1020A, Venezuela

Abstract

Seasonally flooded forests represent a transition between terrestrial and aquatic ecosystems. The Mapire river, a tributary of the Orinoco river, floods its surrounding forests during the wet season (May–December). The soils are very acid and the total nitrogen concentration (0.1%) is only half that found in nearby soils flooded by Orinoco waters. Ammonium-nitrogen predominates in the soil during the flooded period while nitrate-nitrogen concentrations are higher in the dry period. Wide fluctuations in the inorganic nitrogen fractions did not considerably affect the annual course of soil nitrogen.

The predominance of mineralization versus nitrification (56 and 5 μg soil month−1 respectively) and possibly the synchronization of nitrogen availability with plant demand could be considered as nitrogen conserving mechanisms.

In synchrony with the hydrologic cycle, the seasonally flooded forest studied shows a nitrogencycle where inputs and accumulation are maximized when the system is under minimum stress (dry season). During flooding, the system enters a period of dormancy making minimal use of nutrient and energy to avoid or tolerate anaerobiosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Anderson, J. M. & Ingram, J. S. I. 1993. Tropical soil biology and fertility: a handbook of methods. Second Edition. CAB International. 221 pp.Google Scholar
Berg, P. 1986. Nitrifier populations and nitrification rates in agricultural soil. PhD dissertation. Rapport 34, Swedish University of Agricultural Sciences, Department of Microbiology, Uppsala. 125 pp.Google Scholar
Binkley, D. & Matson, P. A. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Science Society of America Journal 47:10501052.Google Scholar
Black, C. A. 1965. Methods of soil analysis, part 2. American Society of Agronomy, Madison, Wisconsin. 1682 pp.Google Scholar
Bonde, T. & Rosswall, T. 1987. Seasonal variation of potentially mineralizable nitrogen in four cropping systems. Soil Science Society of America Journal 51 (6): 15081514.Google Scholar
Bouyucos, D. A. 1927. The Hydrometer as a new method for the mechanical analysis of soil. Soil Science Journal 23:343352.Google Scholar
Bremner, J. M. 1965. Pp. 12561286 in Black, C. A. (ed.). Methods of soil analysis, part 2. American Society of Agronomy, Madison, Wisconsin. 1682 pp.Google Scholar
Cassman, K. G. & Munns, D. N. 1980. Nitrogen mineralization as affected by soil moisture, temperature and depth. Soil Science Society of America Journal 44:12331237.Google Scholar
Clarholm, M. 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants. Pp. 355365 in Fitter, A. H. (ed.). Ecological interactions in soil. Blackwell Scientific Publications. 451 pp.Google Scholar
Coplanarh, . 1974. Inventario Nacional de Tierras: Regiones Centra Occidental y Oriental de Venezuela. Regiones 7 y 8, subregiones 7b, 7c, 8a, 8b. Caracas, Septiembre. Publicacion no. 35. 79 pp.Google Scholar
De La Rosa, T. 1988. Asociación micorrícica vesiculo-arbuscular en un bosque estacionalmente inundable en las riberas del río Mapire (Edo. Anzoátegui). BSc Thesis, Universidad Simon Bolivar. 132 pp.Google Scholar
FAV. 1984. Climatology Atlas, period 1950–1970. Grupo Logistico de Metereologia, Fuerza Aerea de Venezuela, Maracay, Venezuela (in Spanish). 84 pp.Google Scholar
Franco, A. & Munns, D. N. 1982. Plant assimilation and nitrogen cycling. Plant and Soil 67:113.Google Scholar
Haynes, R. J. 1986 (ed.). Mineral nitrogen in the plant-soil system. Academic Press. 483 pp.Google Scholar
Herrera, R. & Jordan, C. F. 1981. Nitrogen cycle in a tropical Amazonian rain forest: the caatinga of low mineral nutrient status. Ecological Bulletin 33:493505.Google Scholar
Herrera, R., Jordan, C. F., Klinge, H. & Medina, E. 1978. Amazon ecosystems. Their structure and functioning with particular emphasis on nutrients. Interciencia 3:223232.Google Scholar
Herrera, R., Jordan, C. F., Medina, E. & Klinge, H. 1981. How human activities disturb the nutrient cycles of a tropical rainforest in Amazonia. Ambio X(2–3):109114.Google Scholar
Irion, G., Adis, J., Junk, W. J. & Wunderlich, F. 1983. Sedimentological studies on the Ilna Marchantaria in the Solimoes/Amazon river near Manaus. Amazoniana VII:118.Google Scholar
Jordan, C. F. 1985. Nutrient cycling in tropical forest ecosystems. J. Wiley & Sons. 189 pp.Google Scholar
Juan, T. L. 1959. Determination of exchangeable hydrogen in soils by titration methods. Soil Science Journal 88:164167.Google Scholar
Junk, W. J., Bayley, P. B. & Sparks, R. E. 1989. The flood pulse concept in river-floodplain systems. Pp. 110127, in Dodge, D. P. (ed.). Proceedings of the International Large River Symposium. Canadian Special Publication on Fisheries and Aquatic Sciences 106.Google Scholar
Lamb, D. 1980. Soil nitrogen mineralisation in a secondary rainforest succession. Oecologia 47:257263.Google Scholar
Matson, P. A., Vitousek, P. M., Ewel, J. J., Mazzarino, M. J. & Robertson, G. P. 1987. Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68(3): 491502.Google Scholar
Montagnini, F. & Buschbacher, R. 1989. Nitrification rates in two undisturbed tropical rainforests and three slash-and-burn sites in the Venezuelan Amazon. Biotropica 21 (1):914.Google Scholar
Murphy, J. & Riley, J. P. 1962. A modified single solution method for the determination of phosphorus in natural waters. Analitycal Chemistry Acta 27:3136.Google Scholar
Nadelhoffer, K. J., Aber, J. D. & Melillo, J. M. 1985. Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:13771390.CrossRefGoogle Scholar
Naiman, R., Decamps, H. & Fournier, F. 1989. Role of land/inland water ecotones in landscape management and restoration. Man and the Biosphere (MAB) Digest 4. 93 pp.Google Scholar
Nelson, W. L., Mehlich, A. & Winters, E. 1953. The development, evaluation, and use of soil tests for phosphorus availability. Agronomy 4:153188.Google Scholar
Ponnamperuma, F. N. 1984. Effects of flooding on soils. Pp. 1042 in Kozlowski, T. T. (ed.). Flooding and plant growth. Academic Press, New York. 368 pp.Google Scholar
Popovic, B. 1980. Mineralization of nitrogen in incubated soil samples from an old Scots pine forest. Pp. 438454 in Persson, T. (ed.). Structure and function of northern coniferous forests. Ecological Bulletin 32. 865 pp.Google Scholar
Raison, R. J., Connell, M. J. & Khanna, P. K. 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biology and Biochemistry 19:521530.Google Scholar
Reddy, K. R. 1982. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa). Plant and Soil 67:1534.CrossRefGoogle Scholar
Reddy, K. R. & Patrick, W. H. 1975. Effect of alternative aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry 7:8794.Google Scholar
Reddy, K. R., Patrick, W. H. & Phillips, R. E. 1976. Ammonium diffusion as a factor in nitrogen loss from flooded soils. Soil Science Society of America Journal 40:528533.Google Scholar
Rosales, J. 1988. Analisis florístico-estructural y algunas relaciones ecológicas en un bosque inundable en la boca del río Mapire (Edo. Anzoategui). MSc thesis, Instituto Venezolano de Investigaciones Cientificas. 214 pp.Google Scholar
Rosswall, T. 1982. Microbial regulation of the biogeochemical nitrogen cycle. Plant and Soil 67:1534.CrossRefGoogle Scholar
Runge, M. 1971. Investigations of the content and the production of mineral nitrogen in soils. Pp. 191202 in Ellemberg, (ed.). Integrated Experimental Ecology. Ecological Studies no. 2. Springer-Verlag, New York-Berlin. 285 pp.Google Scholar
Russell, E. W. 1973. Soil conditions and plant growth. 10th ed. Longman Publishing Company. 849 pp.Google Scholar
Stanford, G. 1982. Assessment of soil nitrogen availability. Pp. 651688 in Stevenson, F. J. (ed.). Nitrogen in agricultural soils. American Society of Agronomy, Madison, Wisconsin. 940 pp.Google Scholar
Vegas-Villarrubia, T. 1988. Descripción limnologica de la desembocadura del río Mapire (Llanos Orientales, Edo. Anzoátegui): un sistema entre no y lago. PhD thesis, Instituto Venezolano de Investigaciones Cientificas. 180 pp.Google Scholar
Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. The American Naturalist 119(4): 553572.Google Scholar
Vitousek, P. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65(1): 285298.Google Scholar
Vitousek, P. & Matson, P. A. 1985. Disturbance, nitrogen availability and nitrogen losses in intensively managed loblolly pine plantation. Ecology 66:13601376.Google Scholar
Vitousek, P. & Reiners, W. A. 1975. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25:276281.Google Scholar