Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T08:19:26.340Z Has data issue: false hasContentIssue false

Evaluation of regression models for above-ground biomass determination in Amazon rainforest

Published online by Cambridge University Press:  10 July 2009

Johannes Petrus Maria Overman
Affiliation:
Hugo de Vries Laboratory, Faculty of Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, the Netherlands.
Hendrik Johannes Louis Witte
Affiliation:
Hugo de Vries Laboratory, Faculty of Biology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, the Netherlands.
Juan Guillermo Saldarriaga
Affiliation:
Tropenbos-Colombia Programme, A.A. 036062, Santafé de Bogotá, Colombia.

Abstract

In a mature lowland ‘terra firme’ forest near Araracuara in Colombia, a study was conducted to determine the above-ground biomass by means of regression analysis. Dry weight, DBH (i.e. stem diameter at 1.3 m above ground level, or just above buttresses if these surpassed 1.3 m in height), total height and specific wood density were measured on 54 harvested trees, chosen in a ‘selected random’ manner. Nine different regression models were evaluated for statistical correctness, accuracy of the estimates and for practical use. The logarithmically transformed models with DBH2, and DBH2 × height as independent variables appeared to be the only models meeting the above criteria, the latter being the most accurate.

The exclusion of big trees (DBH >45 cm) from the regression did not result in significant changes of the regression coefficients.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Barney, R. J., Vancleve, K. & Schlentner, R. 1978. Biomass distribution and crown characteristics in two Alaskan Picea mariana ecosystems. Canadian Journal of Forest Research 8:3641.CrossRefGoogle Scholar
Belsley, D. A., Kuh, E. & Welsh, R. E. 1980. Regression diagnostics. Identifying influential data and sources of collinearity. John Wiley & Sons Inc., New York. 292 pp.CrossRefGoogle Scholar
Draper, N. R. & Smith, H. 1981. Applied regression analysis. 2nd edition. J. Wiley & Sons. 709 pp.Google Scholar
Duivenvoorden, J. F., Lips, J. M., Palacios, P. A. & Saldarriaga, J. G. 1988. Levantamiento ecológico de parte de la cuenca del medio Caquetá en la Amazonia Colombiana. Colombia Amazonica 3(1):738.Google Scholar
Duivenvoorden, J. F. & Lips, J. M. In press. Landscape ecology of the middle Caquetá basin. Explanatory notes to the maps. In Saldarriaga, J. & Van der Hammen, T. (eds). Studies on the Colombian Amazon Vol. 3. Programa Tropenbos-Colombia, Bogotá.Google Scholar
Egunjobi, J. K. 1976. An evaluation of five methods for estimating biomass of an even-aged plantation of Pinus caribea L. Oecologia Plantarum 11(2): 109116.Google Scholar
Glantz, S. A. 1987. Primer of biostatistics. 2nd edition. McGraw-Hill Inc., USA. 379 pp.Google Scholar
Jordan, C. F. 1985. Nutrient cycling in tropical forest ecosystems. Principles and their application in management and conservation. J. Wiley & Sons. 179 pp.Google Scholar
Jordan, C. F. & Uhl, C. 1978. Biomass of a ‘terra firme’ forest of the Amazon Basin. Oecologia Plantarum 13(4):387400.Google Scholar
Klinge, H. & Herrera, R. 1983. Phytomass structure of natural plant communities on spodosols in Southern Venezuela: The tall Amazon Caatinga forest. Vegetatio 53:6584.CrossRefGoogle Scholar
Klinge, H., Rodriguez, W. A., Brunig, E. & Fittkau, E. J. 1975. Biomass and structure in a central Amazonian rain forest. Pp. 115122 in Golley, F. B., Medina, E. (eds). Tropical ecological systems. Springer-Verlag, Berlin. 398.CrossRefGoogle Scholar
Köppen, W. 1936. Das geographische System der Klimaten. Pp. 14 in Köppen, W. & Geiger, R. (eds). Handbuch der Klimatologie. Band I, Part C, Berlin.Google Scholar
Moore, P. J. & Chapman, S. B. (eds). 1986. Methods in plant ecology. Blackwell Scientific Publications. 536 pp.Google Scholar
Ogawa, H., Yoda, K., Ogino, K. & Kira, T. 1965. Comparative ecological studies on three main types of forest vegetation in Thailand. II Plant biomass. Nature and lift in Southeast Asia IV:4980.Google Scholar
Overman, J. P. M. 1989. Quantitative estimators for aerial biomass determination of a mature and a successional forest in the Colombian Amazon. Internal report no. 268. Hugo de Vries Laboratory, University of Amsterdam, Amsterdam. 38 pp.Google Scholar
Overman, J. P. M., Saldarriaga, J. G. & Duivenvoorden, J. F. 1990. Estimación de la biomasa áerea en el bosque del medio Caquetá, Colombia. Colombia Amazonica 4(2): 135147.Google Scholar
Pastor, J., Aber, J. D. & Melillo, J. M. 1984. Biomass prediction using generalized allometric regressions for some Northeast tree species. Forest Ecology and Management 7:265274.CrossRefGoogle Scholar
Rodriguez, L. V. A. 1988. Consideraciones sobre la biomassa, composición quimica y dinámica del bosque plúvial trópical de Colinas Bajas, Bajo Calima, Buenaventura, Colombia. CONIF. Serie Documentacion No. 16. 36 pp.Google Scholar
Saldarriaga, J. G., West, D. C., Tharp, M. L. & Uhl, C. 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938958.CrossRefGoogle Scholar
Santee, W. R. & Monk, C. D. 1981. Stem diameter and dry weight relationships in Tsuga canadensis (L.) Carr. Bulletin of the Torrey Botanical Club 108(3):320323.CrossRefGoogle Scholar
Sarmiento, G. 1984. Los ecosistemas y la ecosfera. Editorial Blume, Barcelona. 272 pp.Google Scholar
Satoo, T. & Madgwick, H. A. I. 1982. Forest biomass. M. Nijhoff/W. Junk Publishers. The Hague. 152 pp.Google Scholar
Schmitt, M. D. C. & Grigal, D. F. 1981. Generalized biomass estimation equation for Betula papyrifera Marsh. Canadian Journal of Forest Research 11:837840.CrossRefGoogle Scholar
Walter, H. & Lieth, H. 1960. Klimadiagramm - Weltatlas. VEB Gustav Fischer Verlag Jena.Google Scholar
Whitmore, T. C., Peralta, R. & Brown, K. 1985. Total species count in a Costa Rican tropical rain forest. Journal of Tropical Ecology 1 (4):375378.CrossRefGoogle Scholar
Witte, H. J. L., Wijmstra, T. A. & Young, R. 1988. Walter graph, a program for drawing Walter climatic diagrams. Hugo de Vries Technical note 15, University of Amsterdam, Amsterdam. 3 pp.Google Scholar