Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T08:47:26.120Z Has data issue: false hasContentIssue false

The biosystematics and evolution of the Polyalthia hypoleuca species complex (Annonaceae) of Malesia. II. Comparative distributional ecology

Published online by Cambridge University Press:  10 July 2009

Steven H. Rogstad
Affiliation:
Department of Organismal and Evalutionary Biology, Harvard University, Cambridge, Massachusetts, USA,

Abstract

One component of the high organismal diversity of tropical lowland rain forests is the existence of series of closely related, sympatric species. For example, the six distinct tree species of the monophyletic Polyalthia hypoleuca complex regularly grow sympatrically in various combinations throughout the rain forests of Malesia. Theoretical and empirical evidence has been presented indicating that the members of such series either (1) are well differentiated with respect to at least one major niche component; or (2) may lack differentiated niches. In this study, certain sympatric members of the complex are shown to have clearly diverged in autecological characteristics that affect their distribution including: (1) P. glauca, P. hypoleuca, and P. sumatrana differ in growth characteristics, height at maturity, seedling germination requirements, and are found on soils with differing degrees of hydration; (2) P. discolor grows to a different height and on different substrate types than does P. multinervis; and (3) P. glauca and P. hypoleuca seedlings differ in transpiration characteristics and response to flooding and drought.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Allbrook, A. F. 1974. The soils of Pasoh Forest Reserve, Negri Sembilan. IBP-Synthesis Meeting. School of Agriculture, University of Malaya, Kuala Lumpur.Google Scholar
Armstrong, R. A. & Mcgehee, R. 1980. Competitive exclusion. American Naturalist 115:151170.CrossRefGoogle Scholar
Ashton, P. A. 1977. A contribution of rain forest research to evolutionary theory. Annals of the Missouri Botanical Garden 64:694705.CrossRefGoogle Scholar
Bazzaz, F. A. 1984. Dynamics of wet tropical forests and their species strategies. Pp. 121133 in Medina, E., Mooney, H. A. & Vazquez-Yanes, C. (eds). Physiological ecology of plants of the wet tropics. Dr W. Junk Publishers, The Hague.Google Scholar
Bazzaz, F. A. & Pickett, S. T. A. 1980. Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11:287310.CrossRefGoogle Scholar
Black, C., Tang, D. Y., Ong, C., Solon, A. & Simmonds, L. 1985. Effects of soil moisture stress on the water relations and water use of groundnut stands. New Phytologist 100:313328.CrossRefGoogle Scholar
Brunig, E. F. 1974. Ecological studies in kerangas forests of Sarawak and Brunei. Borneo Literature Bureau for the Sarawak Forest Department. Kuching, Sarawak, East Malaysia.Google Scholar
Chung, C. S. 1973. The limestone flora of Malaya. School of Biological Sciences, University of Malaya, Kuala Lumpur.Google Scholar
Den Boer, P. J. 1986. The present status of the competitive exclusion principle. Trends in Evolution and Ecology 1:2528.CrossRefGoogle ScholarPubMed
Falconer, D. S. 1983. Quantitative genetics. (2nd edition). Longman Group, Ltd. London, Great Britain. 340 pp.Google Scholar
Fedorov, A. A. 1966. The structure of the tropical rain forest and speciation in the humid tropics. The Journal of Ecology 54:111.CrossRefGoogle Scholar
Fleming, T. H. 1985. Coexistence of five sympatric Piper (Piperaceae) species in a tropical dry forest. Ecology 66:688700.CrossRefGoogle Scholar
Grant, V. 1963. The origin of adaptations. Columbia University Press, New York. 417 pp.Google Scholar
Grant, V. 1971. Plant speciation. Colombia University Press, New York. 368 pp.Google Scholar
Hallé, F., Oldeman, R. A. A. & Tomlinson, P. B. 1978. Tropical trees and forests. Springer-Verlag, New York. 310 pp.CrossRefGoogle Scholar
Hardin, G. 1960. The competitive exclusion principle. Science 131:12921297.CrossRefGoogle ScholarPubMed
Hold Ridge, L. R. 1967. Life zone ecology, (revised edition). Tropical Science Center, San Jose, Costa Rica. 206 pp.Google Scholar
Hubbell, S. P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203: 12991309.CrossRefGoogle Scholar
Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. 1985. Mortality patterns and stand turnover rates in a wet tropical forest in Costa Rica. The Journal of Ecology 73:915924.CrossRefGoogle Scholar
Loffler, E. 1977. Geomorphology of Papua New Guinea. Australian National University Press, Canberra. 196 pp.Google Scholar
Mayr, E. 1970. Populations, species, and evolution. Harvard University Press, Cambridge, Massachusetts. 454 pp.Google Scholar
Patjmans, K. (ed.). 1976. New Guinea vegetation. National University Press, Canberra, Australia. 213 pp.Google Scholar
Pickett, S. T. A. & BAZZAZ, F. A. 1976. Divergence of two co-occurring successional annuals on a soil moisture gradient. Ecology 57:169175.CrossRefGoogle Scholar
Rogstad, S. H. 1986. A biosystematic investigation of the Polyalthia hypoleuca complex (Annonaceae) of Malesia. PhD. Thesis, Harvard University, Cambridge, Massachusetts. 323 pp.Google Scholar
Rogstad, S. H. 1989. The biosystematics and evolution of the Polyalthia hypoleuca species complex (Annonaceae) of Malesia. I. A systematic treatment. Journal of the Arnold Arboretum 70:153246.CrossRefGoogle Scholar
Rogstad, S. H. & Le Thomas, A. 1989. Pollen characters of the Polyalthia hypoleuca complex (Annonaceae): their significance in establishing monophyly and candidate outgroups. Bulletin Musæeum d&Histoire Naturelle (Paris) 4th Series, 11, Section B, Adansonia 3:257278.Google Scholar
Simpson, G. G. 1961. Principles of animal taxonomy. Columbia University Press, New York. 319 pp.CrossRefGoogle Scholar
Soepadmo, E. 1978. Introduction to the Malaysian IBP synthesis meetings. Malayan Nature Journal 30:119124.Google Scholar
Sokal, R. R. & Rohlf, F. J. 1969. Biometry. Freeman, San Francisco. 513 pp.Google Scholar
Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York. 428 pp.CrossRefGoogle Scholar
Stern, K. & Roche, L. 1974. Genetics of forest ecosystems. Springer-Verlag, New York. 286 pp.CrossRefGoogle Scholar
Van Steenis, C. G. G. J. 1981. Rheophytes of the World. Alphen Aanden Rijn, Netherlands. 407 pp.CrossRefGoogle Scholar
Wadman-Van, Schravendljk H. & Van Andel, O. M. 1986. The role of ethylene during flooding of Phaseolus vulgaris. Physiologia Plantarum 66:257264.Google Scholar
Whitmore, T. C. 1984. Tropical rain forests of the Far East. (2nd edition). Clarendon Press, Oxford. 352 pp.Google Scholar
Wilkinson, L. 1984. Systat manual. Systat, Inc., Evanston, IL., USA. 383 pp.Google Scholar
Wong, M. 1983. Understorey phenology of the virgin and regenerating habitats in Pasoh Forest Reserve, Negeri Sembilan, Wst Malaysia. Malaysian Forester 46:197223.Google Scholar
Wyatt-Smith, J. 1963. Manual of Malayan silviculture for inland forests (2 Vols.). Malay. Forest Records No. 23., Kuala Lumpur.Google Scholar
Yoda, K. 1978. Organic carbon, nitrogen and mineral nutrients stock in the soils of Pasoh forest. Malayan Nature Journal 30:229251.Google Scholar