Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T15:08:15.305Z Has data issue: false hasContentIssue false

Studies on the Growth of Stichococcus Bacillaris Naeg in Culture

Published online by Cambridge University Press:  11 May 2009

J. Hayward
Affiliation:
Botany Department, University College, Swansea

Extract

Stichococcus bacillaris has been grown under conditions of varying ionic concentrations. Sodium chloride appears to be the dominant compound in determining growth of this euryhaline alga and from the reaction to increased sodium chloride concentration it is postulated that S. bacillaris is a freshwater organism which can tolerate high salinities. Some morphogenetic effects of high salinity are described.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artari, A., 1901. Zur Ernährungsphysiologie der grünen Algen. Bericht der Deutschen botanischen Gesellschaft, 19, 79.Google Scholar
Braarud, T., 1961. Cultivation of marine organisms as a means of understanding environmental influences on populations. In Oceanography (ed. M., Sears), pp. 271–98. A.A.A.S. Washington, D.C.Google Scholar
Droop, M. R., 1958. Optimum, relative and actual ionic concentrations for growth of some euryhaline algae. Verhandlungen des Internationalen Vereinigung fūr theoretische und angewandte Limnologie, 13, 122–30.Google Scholar
George, E. A., 1957. A note on Stichococcus bacillaris Naeg and some species of Chlorella as marine algae. Journal of the Marine Biological Association of the United Kingdom, 36, 111–14.CrossRefGoogle Scholar
Griffiths, D. J., 1961. Light induced cell division in Chlorella vulgaris Beijerinck (Emerson strain). Annals of Botany, New Series, 25, 8593.CrossRefGoogle Scholar
Guillard, R. R. L. & Mykelstad, S., 1970. Osmotic and ionic requirements of the marine centric diatom Cyclotella nana. Helgoländer wissenschaftliche Meeresuntersuchungen, 20, 104–10.CrossRefGoogle Scholar
Macleod, R. A. & Snell, E. E., 1948. The effect of related ions on the potassium requirement of lactic acid bacteria. Journal of Biological Chemistry, 176, 3952.CrossRefGoogle ScholarPubMed
McLachlan, J., 1960. The culture of Dunaliella tertiolecta Butcher – a euryhaline organism. Canadian Journal of Microbiology, 6, 367379.CrossRefGoogle Scholar
Pincemin, J. M., 1972. Influence de la salinité sur le dinoflagelle Glenodinium monotis. Revue Internationale d'Oceanographie medicale, 25, 7187.Google Scholar
Provasoli, L., McLaughlin, J. J. A. & Droop, M. R., 1957. The development of artificial media for marine algae. Archiv für Mikrobiologie, 25, 392428.CrossRefGoogle ScholarPubMed
Provasoli, L., McLaughlin, J. J. A. & Pintner, I. J., 1954. Relative and limiting concentrations of major mineral constituents for the growth of algal flagellates. Transactions of the New York Academy of Sciences, 16, 412–17.CrossRefGoogle Scholar