Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T02:42:50.030Z Has data issue: false hasContentIssue false

Siphonophores from surface waters of the Colombian Pacific Ocean

Published online by Cambridge University Press:  05 February 2018

Julian Uribe-Palomino*
Affiliation:
CSIRO Oceans and Atmosphere, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia
Raúl López
Affiliation:
Programa de Biología Aplicada, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada Km 2 vía Cajicá-Zipaquirá, Colombia
Mark J. Gibbons
Affiliation:
Biodiversity and Conservation Biology Department, University of the Western Cape, Private Bag X17, Bellville 7535, RSA
Felipe Gusmão
Affiliation:
Department of Marine Science, Federal University of São Paulo, Santos, SP, Brazil
Anthony J. Richardson
Affiliation:
CSIRO Oceans and Atmosphere, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia Centre for Applications in Natural Resource Mathematics (CARM), School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia
*
Correspondence should be addressed to: J. Uribe-Palomino, CSIRO Oceans and Atmosphere, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia email: [email protected]

Abstract

Siphonophores are colonial hydrozoans that feed on zooplankton including fish larvae, and occur throughout the world's oceans from surface waters to ocean depths. Here we describe the composition of hyponeustonic siphonophores (0–3 m depth) from the tropical Colombian Pacific Ocean based on 131 plankton samples collected between June–October from 2001–2004. Samples were dominated by species of Calycophorae, with only three species of Physonectae identified, consistent with their deeper depth distribution. Muggiaea atlantica, Chelophyes contorta, Diphyes dispar, and Eudoxoides mitra were the most common of the 21 species identified. We found moderate structuring of the siphonophore community by the salinity gradient from inshore to offshore, and greater richness during the night because of diel vertical migration. Temperature did not play a significant role in structuring siphonophore communities, perhaps because of the narrow temperature range observed (3.5 °C). We extend the known temperature and salinity range of several species, including M. atlantica up to temperatures of 28.6 °C and salinities down to 24.7. Interestingly, only polygastric stages of M. atlantica were found, suggesting the reproductive stage of M. atlantica in tropical waters might be found in deeper waters. Chelophyes appendiculata was rare in our study and C. contorta was common, providing evidence they have a potential allopatric relationship, with C. contorta replacing C. appendiculata in warm water. Finally, we found siphonophore abundance was positively related to the abundance of copepods and fish eggs, with the top 13 most abundant species all having positive correlations, suggesting siphonophore abundances are tightly controlled by their food.

Type
Review
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlstrom, E.H. and Stevens, E. (1976) Report of neuston (surface) collections made on an extended CalCOFI cruise during May 1972. California Cooperative Oceanic Fish. Investigations Report 18, 167180.Google Scholar
Alvariño, A. (1971) Siphonophores of the Pacific with a review of the world distribution. Bulletin of the Scripps Institution of Oceanography University of California 16, 432.Google Scholar
Alvariño, A. (1974) Distribution of siphonophores in the regions adjacent to the Suez and Panama Canals. Fishery Bulletin 72, 527546.Google Scholar
Alvariño, A. (1985) Predation in the plankton realm; mainly with reference to fish larvae. Investigaciones Marinas CICIMAR 2, 1122.Google Scholar
Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Andrade, C. (2012) Sifonóforos (Cnidaria, Hydrozoa) de aguas superficiales alrededor de la Isla Santa Clara, durante Septiembre y Noviembre del 2007. Acta Oceanográfica del Pacífico 17, 139146.Google Scholar
Apablaza, P. and Palma, S. (2006) Efecto de la zona de mínimo oxígeno sobre la migración vertical de zooplancton gelatinoso en la bahía de Mejillones. Investigaciones Marinas 34, 8195.Google Scholar
Arai, M.N. (1988) Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology 66, 19131927.Google Scholar
Ayón, P., Criales-Hernandez, M.I., Schwamborn, R. and Hirche, H.J. (2008) Zooplankton research off Peru: a review. Progress in Oceanography 79, 238255.Google Scholar
Banse, K. (1964) On the vertical distribution of zooplankton in the sea. Progress in Oceanography 2, 53125.Google Scholar
Batistić, M., Lučić, D., Carić, M., Garić, R., Licandro, P. and Jasprica, N. (2013) Did the alien calycophoran Muggiaea atlantica outcompete its native congeneric M. kochii in the marine lakes of Mljet Island (Croatia)? Marine Ecology 34(Suppl. 1), 313.Google Scholar
Baxter, E.J., Rodger, H.D., McAllen, R. and Doyle, T.K. (2011) Gill disorders in marine-farmed salmon: investigating the role of hydrozoan jellyfish. Aquaculture Environment Interactions 1, 245257.Google Scholar
Bigelow, H.B. (1911) The Siphonophorae. Memoirs of the Museum of Comparative Zoology at Harvard College 38, 173401.Google Scholar
Blackett, M., Licandro, P., Coombs, S.H. and Lucas, C.H. (2014) Long-term variability of the siphonophores Muggiaea atlantica and M. kochii in the Western English Channel. Progress in Oceanography 128, 114.Google Scholar
Blackett, M., Lucas, C., Harmer, R. and Licandro, P. (2015) Population ecology of Muggiaea atlantica (Cnidaria, Siphonophora) in the Western English Channel. Marine Ecology Progress Series 535, 129144.Google Scholar
Boltovskoy, D. (1999) South Atlantic zooplankton, vol. 1. Leiden: Backhuys.Google Scholar
Buecher, E. (1999) Appearance of Chelophyes appendiculata and Abylopsis tetragona (Cnidaria, Siphonophora) in the Bay of Villefranche, northwestern Mediterranean. Journal of Sea Research 41, 295307.Google Scholar
Carré, C. and Carré, D. (1991) A complete life cycle of the calycophoran siphonophore Muggiaea kochii (Will) in the laboratory, under different temperature conditions: ecological implictions. Philosophical Transactions of the Royal Society B: Biological Sciences 334, 2732.Google Scholar
CCCP (2002) Compilación Oceanográfica de la Cuenca Pacífica colombiana. Dirección General Marítima, Tumaco, Colombia.Google Scholar
Cely, H.A. and Chiquillo, J.E. (1993) Quetognatos, sifonóforos e hidromedusas de la región costera del Pacífico colombiano. Thesis. Universidad de Bogotá Jorge Tadeo Lozano, Bogotá, Colombia.Google Scholar
Clarke, K.R., Gorley, R.N., Somerfield, P.J. and Warwick, R.M. (2014) Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition. Plymouth: PRIMER-E, 260 pp.Google Scholar
Daniel, R. (1974) Siphonophora from the Indian Ocean, Vol. 15, No. 4. Zoological Survey of India.Google Scholar
Dufrene, M. and Legendre, P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345366.Google Scholar
Fernández de Puelles, M.L., Alemany, F. and Jansá, J. (2007) Zooplankton time-series in the Balearic Sea (Western Mediterranean): variability during the decade 1994–2003. Progress in Oceanography 74, 329354.Google Scholar
Fosså, J.H., Flood, P.R., Olsen, A.B. and Jensen, F. (2003) Små og usynlige, men plagsomme maneter av arten Muggiaea atlantica (Small and invisible, but troublesome jellyfish of the species Muggiaea atlantica). Fisken Og Havet (Fish and Sea) 2, 99103.Google Scholar
Fox, J. (2003) Effect displays in R for generalised linear models. Journal of Statistical Software 8, 127.Google Scholar
Gamero-Mora, E., Ceballos-Corona, G., Gasca, R. and Morales-Blake, A. (2015) Analisis de la comunidad del zooplancton gelatinoso (Hydrozoa, Ctenophora, Thaliacea) en el Pacifico central mexicano, abril-mayo 2011. Revista de Biologia Marina y Oceanografia 50, 111124.Google Scholar
Garay, J., Panizzo, L., Ramírez, G. and Sánchez, J. (1993) Manual de técnicas analíticas de parámetros físico-químicos y contaminantes marinos. Cartagena: Oceanográficas, Centro de Investigaciones Hidrográficas, CIOH.Google Scholar
Gasca, R. (1999) Siphonophores (Cnidaria) and summer mesoscale features in the Gulf of Mexico. Bulletin of Marine Science 65, 7589.Google Scholar
Gasca, R. (2002) Lista faunística y bibliografía comentadas de los sifonóforos (Cnidaria: Hydrozoa) de México. Anales del Insittuto de Biología, Universidad Nacional Autónoma de México 73, 123143.Google Scholar
Gasca, R. and Suárez, E. (1992a) Sifonóforos (Cnidaria:Siphonophora) del Domo de Costa Rica. Revista de Biología Tropical 40, 125130.Google Scholar
Gasca, R. and Suárez, E. (1992b) Sifonoforos (Cnidaria: Hydrozoa) de la zona sudoccidental de la Peninsula de Baja California, en invierno y verano durante El Nino 1983. Revista de Investigación Cientıfica 3, 3746.Google Scholar
Gibbons, M.J. and Thibault-Botha, D. (2002) The match between ocean circulation and zoogeography of epipelagic siphonophores around southern Africa. Journal of the Marine Biological Association of the United Kingdom 82, 801810.Google Scholar
Golden software, LLC (2003) Surfer (version 8.04). Windows platform. Golden, Colorado. www.goldensoftware.comGoogle Scholar
Harris, R., Wiebe, P., Lenz, J., Skjoldal, H.R. and Huntley, M. (2000) ICES zooplankton methodology manual. London: Academic Press.Google Scholar
Hempel, G. and Weikert, H. (1972) The neuston of the sub-tropical and boreal North-east Atlantic: a review. Marine Biology 13, 7088.Google Scholar
Hsieh, H.Y., Yu, S.F. and Lo, W.T. (2013) Influence of monsoon-driven hydrographic features on siphonophore assemblages in the Taiwan Strait, Western North Pacific Ocean. Marine and Freshwater Research 64, 348358.Google Scholar
Jeong, H.G., Suh, H.L., Lee, W. and Soh, H.Y. (2014) Seasonal variation of the neustonic zooplankton community in southern waters of Korea. Ocean Science Journal 49, 167181.Google Scholar
Kršinić, F. and Njire, J. (2001) An invasion by Muggiaea atlantica Cunningham 1892 in the northern Adriatic Sea in the summer of 1997 and the fate of small copepods. Acta Adriatica 42, 4959.Google Scholar
Licandro, P., Souissi, S., Ibanez, F. and Carré, C. (2012) Long-term variability and environmental preferences of calycophoran siphonophores in the Bay of Villefranche (north-western Mediterranean). Progress in Oceanography 97–100, 152163.Google Scholar
Lo, W.T., Kang, P.R. and Hsieh, H.Y. (2012) Siphonophores from a transect off southern Taiwan between the Kuroshio current and South China sea. Zoological Studies 51, 13541366.Google Scholar
Lo, W.T., Yu, S.F. and Hsieh, H.Y. (2013) Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, Western North Pacific Ocean. Journal of Oceanography 69, 495509.Google Scholar
Lo, W.T., Yu, S.F. and Hsieh, H.Y. (2014) Hydrographic processes driven by seasonal monsoon system affect siphonophore assemblages in tropical-subtropical waters (Western North Pacific Ocean). PLoS ONE 9, 119.Google Scholar
Mackie, G.O., Pugh, P.R. and Purcell, J.E. (1988) Siphonophore biology. Advances in Marine Biology 24, 97262.Google Scholar
Macpherson, E. (2002) Large-scale species-richness gradients in the Atlantic Ocean. Proceedings of the Royal Society of London B: Biological Sciences 269, 17151720.Google Scholar
Mapstone, G.M. (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9, 137.Google Scholar
Martínez-Aguilar, T.I., Giraldo López, A. and Rodríguez-Rubio, E. (2007) Zooplancton en la Corriente de Colombia, Pacífico Colombiano, durante Marzo de 2006. Boletin Científico CCCP 14, 6982.Google Scholar
Mills, C.E. (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451, 5568.Google Scholar
Oksanen, J. (2011) Multivariate analysis of ecological communities in R: vegan tutorial. R package version 3.3.3.Google Scholar
Oksanen, J. (2017). Package ‘vegan’. https://cran.r-project.org. 292pp.Google Scholar
Pagès, F., Gili, J.M. and Bouillon, J. (1990) The siphonophores (Cnidaria, Hydrozoa) of Hansa Bay, Papua New Guinea. Indo-Malayan Zoology 6, 133140.Google Scholar
Pagès, F., Gili, J.M. and Bouillon, J. (1992) Siphonophores (Cnidaria, Hydrozoa) of the Benguela Current (Southeastern Atlantic). Scientia Marina 56, 65112.Google Scholar
Palma, S. (1973) Contribución al estudio de los sifonóforos encontrados frente a la costa de Valparaíso. I. taxonomía. Investigaciones Marinas 4, 1788.Google Scholar
Palma, S. (1999) Sifonóforos (Cnidaria, Hydrozoa) de aguas superficiales de Isla de Pascua. Investigaciones Marinas 27, 1923.Google Scholar
Palma, S. and Apablaza, P. (2004) Abundancia estacional y distribución vertical del zooplancton gelatinoso carnívoro en una área de surgencia en el norte del sistema de la Corriente de Humboldt. Investigaciones Marinas 32, 4970.Google Scholar
Palma, S., Apablaza, P. and Soto, D. (2007) Diversity and aggregation areas of planktonic cnidarians of the southern channels of Chile (Boca del Guafo to Pulluche Channel). Investigaciones Marinas 35, 7182.Google Scholar
Palma, S. and Rosales, S. (1995) Composición, distribución y abundancia estacional del macroplancton de la bahía de Valparaíso. Investigaciones Marinas 23, 4966.Google Scholar
Palma, S. and Silva, N. (2004) Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-Sea Research Part II: Topical Studies in Oceanography 51, 513535.Google Scholar
Pavez, M.A., Landaeta, M.F., Castro, L.R. and Schneider, W. (2010) Distribution of carnivorous gelatinous zooplankton in the upwelling zone off central Chile (austral spring 2001). Journal of Plankton Research 32, 10511065.Google Scholar
Pierrot-Bults, A.C. and Angel, M.V. (2013) Pelagic biodiversity and biogeography of the Oceans. Biology International 51, 935.Google Scholar
Pugh, P.R. (1974) The vertical distribution of the siphonophores collected during the Sond Cruise, 1965. Journal of the Marine Biological Association of the United Kingdom 54, 2590.Google Scholar
Pugh, P.R. (1984) The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 7. Siphonophores. Progress in Oceanography 13, 461489.Google Scholar
Pugh, P.R. (1999) Siphonophorae. In Boltovskoy, D. (ed.) South Atlantic zooplankton. Leiden: Backhuys Publishers, pp. 467513.Google Scholar
Purcell, J.E. (1985) Predation of fish eggs and larvae by pelagic cnidarians and ctenophores. Bulletin of Marine Science 37, 739755.Google Scholar
Richardson, A.J. and Schoeman, D.S. (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 16091612.Google Scholar
Robison, B.H., Reisenbichler, K.R., Sherlock, R.E., Silguero, J.M.B. and Chavez, F.P. (1998) Seasonal abundance of the siphonophore, Nanomia bijuga, in Monterey Bay. Deep-Sea Research Part II: Topical Studies in Oceanography 45, 17411751.Google Scholar
Rodríguez-Rubio, E. and Wolfgang, S. (2003) On the seasonal circulation within the Panama Bight derived from satellite observations of wind, altimetry and sea surface temperature. Geophysical Research Letters 30, 14.Google Scholar
Roy, K., Jablonski, D., Valentine, J.W. and Rosenberg, G. (1998) Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95, 36993702.Google Scholar
Russell, F.S. (1934) On the occurrence of the siphonophores Muggiaea atlantica Cunningham and Muggiaea kochii (Will) in the English Channel. Journal of the Marine Biological Association of the United Kingdom 19, 555558.Google Scholar
Santander, H., Luyo, R.G., Carrasco, S., Véliz, M. and de Castillo, O.S. (1981) Catálogo de zooplancton en el mar peruano. Primera parte: área Pisco-San Juan. Boletín Instituto del Mar Del Perú 6, 75.Google Scholar
Sanvicente-Añorve, L., Alba, C., Alatorre, M.A. and Flores-Coto, C. (2007) Cross-shelf and vertical distribution of siphonophore assemblages under the influence of freshwater outflows in the southern Gulf of Mexico. Hydrobiologia 586, 6978.Google Scholar
Sanvicente-Añorve, L., Alba, C., Flores-Coto, C. and Castillo-Rivera, M. (2009) Siphonophores off a riverine system in the southern gulf of Mexico: factors affecting their distribution and spatial niche breadth and overlap. Aquatic Ecology 43, 423435.Google Scholar
Silguero, J.M.B. and Robison, B.H. (2000) Seasonal abundance and vertical distribution of mesopelagic calycophoran siphonophores in Monterey Bay, CA. Journal of Plankton Research 22, 11391153.Google Scholar
Thibault-Botha, D. and Gibbons, M. (2005) Epipelagic siphonophores off the east coast of South Africa. African Journal of Marine Science 27, 129139.Google Scholar
Thibault-Botha, D., Lutjeharms, J.R.E. and Gibbons, M.J. (2004) Siphonophore assemblages along the east coast of South Africa: mesoscale distribution and temporal variations. Journal of Plankton Research 26, 11151128.Google Scholar
Thibault-Botha, D., Santo, M. and Neauport, M. (2013) Gelatinous zooplankton in the Bay of Marseilles – potential control of the fish population over artificial reefs? Rapport Commission Internationale pour l'Exploration Scientifique de La Méditerranée 40.Google Scholar
Thiriot, A. (1978) Zooplankton communities in the west African upwelling area. In Boje, R. and Tomczak, M. (eds) Upwelling ecosystems. Berlin: Springer-Verlag, pp. 3261.Google Scholar
Wyrtki, K. (1966) Oceanography of the Eastern Equatorial Pacific Ocean. Oceanography and Marine Biology: An Annual Review 4, 3368.Google Scholar
Supplementary material: File

Uribe-Palomino et al. supplementary material

Uribe-Palomino et al. supplementary material 1

Download Uribe-Palomino et al. supplementary material(File)
File 49.4 KB
Supplementary material: Image

Uribe-Palomino et al. supplementary material

Uribe-Palomino et al. supplementary material 2

Download Uribe-Palomino et al. supplementary material(Image)
Image 224.6 KB