Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T20:56:41.591Z Has data issue: false hasContentIssue false

The seasonal variation in weight and chemical composition of the common British Laminariaceae

Published online by Cambridge University Press:  11 May 2009

W. A. P. Black
Affiliation:
Scottish Seaweed Research Association, Musselburgh

Extract

The seasonal variations in the total ash, crude proteins, mannitol, laminarin and alginic acid contents are given for monthly samples of the Laminariaceae, L. cloustoni, L. digitata and L. saccharina from November 1946 to October 1948, samples of L. digitata and L. saccharina having been taken at different localities to determine the effect, if any, of the degree of exposure on the chemical composition.

The results agree favourably with those of the first 2 years examined and indicate that, with only a few exceptions, results might be reproducible in the corresponding season of any year, and it should be possible, therefore, to predict the approximate composition in subsequent years.

As before, the marked seasonal variations in chemical constitution occur in the fronds, where the bulk, if not all, of the photosynthesis occurs. The stipes undergo some variation parallel to that in the fronds, but within narrower limits, while laminarin is absent throughout the year.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsop, A., 1948. Chromatographic study of meristematic plant tissues. Nature, Vol. 161, pp. 833–5.CrossRefGoogle Scholar
Astbury, W. T., 1945. Structure of alginic acid. Nature, Vol. 155, pp. 667–8.CrossRefGoogle Scholar
Atsuki, K. & Tomoda, Y., 1926 a. Studies on seaweeds of Japan. First report on the chemical constitution of the Laminaria. Journ. Soc. Chem. Ind. Japan, Vol. 29, p. 132B.Google Scholar
Atsuki, K. & Tomoda, Y. 1926 b. Chemical constituents of the brown algae. Journ. Soc. Chem. Ind. Japan, Vol. 29, pp. 509–17, 599.Google Scholar
Barry, V. C., 1938. Preparation, properties and mode of occurrence of laminarin. Sci. Proc. Roy. Dublin Soc., Vol. 21, pp. 615–22.Google Scholar
Barry, V. C. 1939. Constitution of laminarin. Sci. Proc. Roy. Dublin Soc., Vol. 22, pp. 5967.Google Scholar
Barry, V. C. 1941. Hydrolysis of laminarin. Sci. Proc Roy. Dublin Soc., Vol. 22, pp. 423–9.Google Scholar
Barry, V. C. 1942. A new method of end group assay for laminarin. Journ. Chem. Soc., Vol. 183, pp. 578–81.CrossRefGoogle Scholar
Barry, V. C. & Dillon, T., 1935. Preparation and properties of alginic acid. Sci. Proc. Roy. Dublin Soc., Vol. 21, pp. 165–6.Google Scholar
Barry, V. C. & Dillon, T., 1936. Preparation of alginic acid and its constitution. Sci. Proc. Roy. Dublin Soc., Vol. 21, pp. 285–7.Google Scholar
Berk, F. W., 1940. Recovery of mannitol from seaweed. Brit. Pat., 545, 672.Google Scholar
Bird, G. M. & Haas, P., 1931. Nature of the cell wall constituents of Laminaria spp. Biochem. Journ., Vol. 25, pp. 403–11.CrossRefGoogle ScholarPubMed
Black, W. A. P., 1948. Seasonal variation in the chemical constitution of some of the Laminariaceae common to Scotland. Journ. Soc. Chem. Ind., Vol. 67, pp. 165–72.CrossRefGoogle Scholar
Black, W. A. P. & Dewar, E. T., 1949. Correlation of some of the physical and chemical properties of the sea with the chemical constitution of the algae. Journ. Mar. Biol. Assoc., Vol. XXVIII, pp. 673–99.CrossRefGoogle Scholar
Colin, P. & Ricard, R., 1929. Derivatives of brown algae. Some properties of laminarin from Laminariae. Comp. Rend. Acad. Sci. Paris, T. 188, pp. 1449–51.Google Scholar
Colin, P. & Ricard, R. 1930. Glucides and derivatives of the brown algae. Comp. Rend. Acad. Sci. Paris, T. 190, pp. 1514–16.Google Scholar
Cornec, E., 1919. Spectrographic studies of the ash of marine plants. Comp. Rend. Acad. Sci. Paris, T. 168, pp. 513–4.Google Scholar
Dillon, T., 1943. Utilisation of seaweed. Chem. Age., Vol. 49, pp. 279–83, 305–8.Google Scholar
Dillon, T. & McGuinness, A., 1931. Alginic acid. Its mode of occurrence and constitution. Sci. Proc. Roy. Dublin Soc., Vol. 20, pp. 129–33.Google Scholar
Dillon, T. & O'Tuama, T., 1935. Cellulose of marine algae. Sci. Proc. Roy. Dublin Soc., Vol. 21, pp. 147–52.Google Scholar
Gomez, M. L., 1933. Chemical studies of algine and alginic acid. Int. Espan. Oceanograf. Nat. Resum., Ser. II, No. 74, 98 pp.Google Scholar
Gruzewska, M., 1923. Some physical and chemical properties of laminarin. Bull. Soc. Chim. Biol., Vol. 5, pp. 216–26.Google Scholar
Haas, P. & Hill, T. G., 1929. An examination of the metabolic products of certain fucoids. Biochem. Journ., Vol. 23, pp. 1001–4.CrossRefGoogle ScholarPubMed
Haas, P. & Hill, T. G. 1931. Preliminary note on the nitrogen metabolism of seaweeds. Biochem. Journ., Vol. 25, pp. 1472–5.CrossRefGoogle ScholarPubMed
Haas, P. & Hill, T. G. 1933. Observations on the metabolism of certain seaweeds. Ann. Bot., Vol. 47, PP. 5567.CrossRefGoogle Scholar
Haas, P., Hill, T. G. & Russel-Wells, B., 1938. Observations on the metabolism of certain seaweeds. On certain simple peptides occurring in marine algae. Biochem. Journ., Vol. 32, pp. 2129–33.CrossRefGoogle Scholar
Hassid, W. Z., 1944. The chemistry of the carbohydrates. Ann. Rev. Biochem., Vol. 13, pp. 8082.CrossRefGoogle Scholar
Hendrick, J., 1916. The value of seaweeds as raw materials for chemical industry. Journ. Soc. Chem. Ind., Vol. 35, pp. 565–74.Google Scholar
Hirst, E. L., Jones, J. K. N. & Jones, W. O., 1939. Structure of alginic acid. Journ. Chem. Soc., 1939, pp. 1880–5.CrossRefGoogle Scholar
Hoagland, D. R. & Lieb, L. L., 1915. The complex carbohydrates and forms of sulphur in marine algae of the Pacific Coast. Journ. Biol. Chem., Vol. 23, pp. 287–97.CrossRefGoogle Scholar
Jones, A. J., 1922. The arsenic content of some of the marine algae. Pharm. Journ., Vol. 109, pp. 86–7.Google Scholar
Kizevetter, I. V., 1938. Chemical composition and uses of seaweeds of far eastern regions. Bull. Far East Branch Acad. Sci. U.S.S.R., No. 31, pp. 49109.Google Scholar
Krefting, A. & Torup, R., 1909. A new carbohydrate from the Laminariaceae. Pharmacia, Vol. 6, pp. 151–3.Google Scholar
Kylin, H., 1913. Biochemistry of sea algae. Ztschr. Physiol. Chem., Bd. 83, pp. 171–97.CrossRefGoogle Scholar
Kylin, H. 1915. Biochemistry of sea algae. Ztschr. Physiol. Chem., Bd. 94, pp. 337425.CrossRefGoogle Scholar
Kylin, H., 1918. Chemistry of seaweeds. Ztschr. Physiol. Chem., Bd. 101, pp. 236–47.CrossRefGoogle Scholar
Kylin, H. 1944. The biochemistry of the Phaeophyceae. Kgl. Fysiograf. Sällskap. Lund, Förh., Bd. 14, pp. 226–38.Google Scholar
Lapicque, L., 1919. Seasonal variations in the chemical composition of the marine algae. Comp. Rend. Acad. Sci. Paris, T. 169, pp. 1426–8.Google Scholar
Le Gloahec, V. C. E. & Herter, J. R., 1940. Removal and recovery of laminarin. U.S. Patent, 2,188,092.Google Scholar
Lunde, G., 1937. Seaweed as source of chemical raw materials. Ztschr. Angewandte Chemi., Bd. 50, pp. 731–4.CrossRefGoogle Scholar
Manning, W. M. & Hardin, G., 1944. Zanthophylls and carotenes in brown algae. Biol. Bull. Wood's Hole, Vol. 86, pp. 169–91.Google Scholar
Naylor, G. C. & Russel-Wells, B., 1934. Presence of cellulose and its distribution in the cell walls of brown and red algae. Ann. Bot., Vol. 48, pp. 635–41.CrossRefGoogle Scholar
Nelson, W. L. & Cretcher, L. H., 1929. The alginic acid from Macrocystis pyrifera. Journ. Amer. Chem. Soc., Vol. 51, pp. 1914–22.CrossRefGoogle Scholar
Nisizawa, K., 1940. Laminarin and mannitol of brown algae. Science Repts. Tokyo Bunrika Daigaku, Vol. 5B pp. 914.Google Scholar
Öy, E., 1940. Content of iron, copper, manganese and boron in seaweeds. Tids. Kemi Bergv., Vol. 20, pp. 114–17.Google Scholar
Parke, M., 1948. Studies on British Laminariaceae. I. Growth in Laminaria saccharina. Journ. Mar. Biol. Assoc., Vol. 27, pp. 651707.CrossRefGoogle Scholar
Percival, E. G. V. & Ross, A. G., 1948 a. The cellulose of marine algae. Nature, Vol. 162, pp. 895–7.CrossRefGoogle ScholarPubMed
Percival, E. G. V. & Ross, A. G. 1948 b. Colorimetric method for estimation of alginic acid. Journ. Soc. Chem. Ind., Vol. 67, pp. 420–1.CrossRefGoogle Scholar
Ricard, R., 1931. Nature and seasonal variation of the carbohydrates in laminaria. Bull. Soc. Chim. Biol., Vol. 13, pp. 417–35.Google Scholar
Russel-Wells, B., 1932. Fats of brown seaweeds. Nature, Vol. 129, pp. 654–5.CrossRefGoogle Scholar
Schmiedeberg, W. 1885. Über die Bestandtheile der Laminaria. Gesellschaft deutscher Naturforscher und Arzte, Leipzig, Tageblatt der Versammlung, No. 58, p. 427.Google Scholar
Speakman, J. B. & Chamberlain, N. H., 1944. Structure of alginic acid. Journ. Soc. Dyers and Col., Vol. 60, pp. 264–72.CrossRefGoogle Scholar
Stanford, E. C. C., 1883. On algin: a new substance obtained from some of the common species of marine algae. Chem. News., Vol. 47, pp. 254–7, 267–9.Google Scholar
Stanford, E. C. C. 1884 a. On algin. Journ. Soc. Chem. Ind., Vol. 3, pp. 297302.CrossRefGoogle Scholar
Stanford, E. C. C. 1884 b. The economic applications of seaweed. Journ. Soc. Arts, London, Vol. 32, PP. 717–30.Google Scholar
Stanford, E. C. C. 1886. On alginic acid and its compounds. Journ. Soc. Chem. Ind., Vol. 5, pp. 218–21.Google Scholar
Stenhouse, J., 1844. On the occurrence of mannite in L. saccharina and other seaweeds. Journ. Chem. Soc., Vol. 2, pp. 136–40.Google Scholar
Stewart, W. T. & Lucas, H. T., 1940. Oxidation of alginic acid by periodic acid. Journ. Amer. Chem. Soc., Vol. 62, pp. 1792–6.Google Scholar
Takahashi, E., Sirahama, K. & Shun-Iti-Tase, , 1933. Chemical studies on fats of algae. Part I. Contents of fats and their properties. Journ. Chem. Soc Japan, Vol. 54, pp. 619–23.Google Scholar
Takahashi, E., Sirahama, K. & Shun-Iti-Tase, 1935. Part II. Contents of fats and their properties. Journ. Chem. Soc. Japan, Vol. 56, p. 1250.Google Scholar
Takahashi, E., Sirahama, K. & Shun-Iti-Tase, 1939. Part V. Non-volatile fatty acids of Alaria crassifolia. Journ. Chem. Soc. Japan, Vol. 60, pp. 5660.Google Scholar
Vedrinskii, A. I., 1938. Chemical composition of industrially important seaweeds of the White Sea. Trud. Arkangel'skago Vodoroslevago Nauch.-Issledov. Inst. Vodorosli Belago Morya, pp. 6179.Google Scholar
Vernadskii, V. I., 1930. The concentration of radium by plant organisms. Comp. Rend. Acad. Sci. U.S.S.R., Sect. 4, pp. 539–42.Google Scholar
Viel, G., 1939. Sur les celluloses des algues. Comp. Rend. Acad. Sci. Paris, T. 208, pp. 532–4.Google Scholar
Wasserman, A., 1949. Cation adsorption by brown algae. The mode of occurrence of alginic acid. Ann. Bot., Vol. XIII, pp. 7988.Google Scholar
Wilson, S. H. & Fieldes, M., 1941. Studies in spectrographic analysis. II. Minor elements in a sea-weed (Macrocystis pyrifera). New Zealand Journ. Sci. Tech., Vol. 23, No. 2B, pp. 47B–48B.Google Scholar