Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T16:24:56.486Z Has data issue: false hasContentIssue false

Mixotrophy in marine species of Chrysochromulina (Prymnesiophyceae): ingestion and digestion of a small green flagellate

Published online by Cambridge University Press:  11 May 2009

Harriet L. J. Jones
Affiliation:
School of Biological Sciences, University of Birmingham, Birmingham, B15 2TT
B. S. C. Leadbeater
Affiliation:
School of Biological Sciences, University of Birmingham, Birmingham, B15 2TT
J. C. Green
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

Species of Chrysochromulina (Prymnesiophyceae) were screened for their ability to ingest inert material and live cells of a small green flagellate. The species C. brevifilum showed a marked preference for the small green flagellate over carmine particles and the rate of ingestion of the flagellate was proportional to its concentration and inversely proportional to light intensity. Ingestion was also higher by phosphate-starved Chrysochromulina, and a clear predator/prey relationship was demonstrated with C. brevifilum clearly benefiting, in terms of growth rate, from the ingestion of the small green flagellate. Electron micrographs confirmed that digestion occurs.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A., Falk, S., Samuelsson, G. & Hagström, Å., 1989. Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microbial Ecology, 17, 251262.CrossRefGoogle ScholarPubMed
Bird, D. F. & Kalff, J., 1986. Bacterial grazing by planktonic lake algae. Science, New York, 231, 493495.CrossRefGoogle ScholarPubMed
Bird, D. F. & Kalff, J., 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnology and Oceanography, 32, 277284.CrossRefGoogle Scholar
Bird, D. F. & Kalff, J., 1989. Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnology and Oceanography, 34, 155162.CrossRefGoogle Scholar
Boraas, M. E., Estep, K. W., Johnson, P. W. & Sieburth, J. McN., 1988. Phagotrophic phototrophs: the ecological significance of mixotrophy. Journal of Protozoology, 35, 249252.CrossRefGoogle Scholar
Børsheim, K. Y., Harboe, T., Johnsen, T., Norland, S. & Nygaard, K., 1989. Flow cytometric characterization and enumeration of Chrysochromulina polylepis during a bloom along the Norwegian coast. Marine Ecology Progress Series, 54, 307309.CrossRefGoogle Scholar
Cachon, M. & Caram, B., 1979. A symbiotic green alga, Pedinomonas symbiotica sp. nov. (Prasinophyceae), in the radiolarian Thalassolampe margarodes. Phycologia, 18, 177184.CrossRefGoogle Scholar
Caron, D. A., Porter, K. G. & Sanders, R. W., 1990. Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnology and Oceanography, 35, 433443.CrossRefGoogle Scholar
Daley, R. J., Morris, G. P. & Brown, S. R., 1973. Phagotrophic ingestion of a blue-green alga by Ochromonas. Journal of Protozoology, 20, 5861.CrossRefGoogle Scholar
Edvardsen, B., Moy, F. & Paasche, E., 1990. Hemolytic activity in extracts of Chrysochromulina polylepis grown in different levels of selenite and phosphate. In Toxic marine phytoplankton (ed. Graneli, E. et al.), pp. 284289. Amsterdam: Elsevier Scientific Publications.Google Scholar
Estep, K. W., Davis, P. G., Keller, M. D. & Sieburth, J. McN., 1986. How important are oceanic algal nanoflagellates in bacterivory? Limnology and Oceanography, 31, 646650.CrossRefGoogle Scholar
Ettl, H. & Manton, I., 1964. Die feinere Struktur von Pedinomonas minor Korschikoff. Nova Hedwigia, 8, 421451.Google Scholar
Föyn, B., 1934. Lebenszyklus, Cytologie und Sexualitat der Chlorophycee Cladophora suhriana Kützing. Archiv für Protistenkunde, 83, 156.Google Scholar
Hällfors, G. & Niemi, Ä., 1974. A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne archipelago, southern coast of Finland. Memoranda Societatis pro Fauna et Flora Fennica, 50, 89104.Google Scholar
Ishida, Y. & Kimura, B., 1986. Photosynthetic phagotrophy of Chrysophyceae: evolutionary aspects. Microbiological Science, 3, 132135.Google ScholarPubMed
Kawachi, M., Inouye, I., Maeda, O. & Chihara, M., 1991. The haptonema as a food-capturing device: observations on Chrysochromulina hirta (Prymnesiophyceae). Phycologia, 30, 563573.CrossRefGoogle Scholar
Keller, M. D., Selvin, R. C., Claus, W. & Guillard, R. R. L., 1987. Media for the culture of oceanic ultraphytoplankton. Journal of Phycology, 23, 633638.CrossRefGoogle Scholar
Kimura, B. & Ishida, Y., 1985. Photophagotrophy in Uroglena americana, Chrysophyceae. Japanese Journal of Limnology, 46, 315318.Google Scholar
Manton, I., 1972. Preliminary observations on Chrysochromulina mactra sp. nov. British Phycological Journal, 7, 2135.CrossRefGoogle Scholar
Manton, I. & Parke, M., 1962. Preliminary observations on scales and their mode of origin in Chrysochromulina polylepis sp. nov. Journal of the Marine Biological Association of the United Kingdom, 42, 565578.CrossRefGoogle Scholar
Markager, S. & Sand-Jensen, K., 1990. Heterotrophic growth of Ulva lactuca (Chlorophyceae). Journal ofPhycology, 26, 670673.CrossRefGoogle Scholar
Moestrup, Ø., 1991. Further studies of presumedly primitive green algae, including the description of the Pedinophyceae class nov. and Resultor gen. nov. Journal of Phycology, 27, 119133.CrossRefGoogle Scholar
Nielsen, T. G., Kiorboe, T. & Bjornsen, P. K., 1990. Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community. Marine Ecology Progress Series, 62, 2135.CrossRefGoogle Scholar
Nygaard, K., Børsheim, K. Y. & Thingstad, T. F., 1988. Grazing rates on bacteria by marine heterotrophic microflagellates compared to uptake rates of bacterial-sized monodisperse fluorescent latex beads. Marine Ecology Progress Series, 44, 159165.CrossRefGoogle Scholar
Nygaard, K. & Hessen, D. O., 1990. Use of 14C-protein-labelled bacteria for estimating clearance rates by heterotrophic and mixotrophic flagellates. Marine Ecology Progress Series, 68, 714.CrossRefGoogle Scholar
Nygaard, K. & Tobiesen, A., in press. Mixotrophy in algae: a survival strategy during nutrient limitation. Limnology and Oceanography.Google Scholar
Paran, N., Dubinsky, Z. & Berman, T., 1991. Interaction between mixotrophic flagellates and bacteria in aquatic ecosystems. Symbiosis, 10, 219231.Google Scholar
Parke, M. & Manton, I., 1962. Studies on marine flagellates. VI. Chrysochromulina pringsheimii sp. nov. Journal of the Marine Biological Association of the United Kingdom, 42, 391404.CrossRefGoogle Scholar
Parke, M., Manton, I. & Clarke, B., 1955. Studies on marine flagellates. II. Three new species of Chrysochromulina. Journal of the Marine Biological Association of the United Kingdom, 34, 579609.CrossRefGoogle Scholar
Parke, M., Manton, I. & Clarke, B., 1956. Studies on marine flagellates. III. Three further species of Chrysochromulina. Journal of the Marine Biological Association of the United Kingdom, 35, 387414.CrossRefGoogle Scholar
Parke, M., Manton, I. & Clarke, B., 1958. Studies on marine flagellates. IV. Morphology and microanatomy of a new species of Chrysochromulina. Journal of the Marine Biological Association of the United Kingdom, 37, 209228.CrossRefGoogle Scholar
Pascher, A., 1943. Zur Kenntnis verschiedener Ausbildungen der Planktontischen Dinobryon. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 43, 110123.CrossRefGoogle Scholar
Pintner, I. J. & Provasoli, L., 1968. Heterotrophy in subdued light of 3 Chrysochromulina species. Bulletin of the Misaki Marine Biological Institute, Kyoto University. Proceedings of the U. S.-Japan seminar on Marine Microbiology, 12, 2531.Google Scholar
Porter, K. G., 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia, 159, 8997.CrossRefGoogle Scholar
Sanders, R. W., 1991. Mixotrophic protists in marine and freshwater ecosystems. Journal of Protozoology, 38, 7681.CrossRefGoogle Scholar
Sanders, R. W. & Porter, K. G., 1988. Phagotrophic phytoflagellates. Advances in Microbial Ecology, 10, 167192.CrossRefGoogle Scholar
Sanders, R. W., Porter, K. G., Bennett, S. J. & Debiase, A. E., 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnology and Oceanography, 34, 673687.CrossRefGoogle Scholar
Sanders, R. W., Porter, K. G. & Caron, D. A., 1990. Relationship between phototrophy and phagotrophy in the mixotrophic Chrysophyte Poterioochromonas malhamensis. Microbial Ecology 19, 97109.CrossRefGoogle Scholar
Sukhanova, I. N. & Cheban, E. A., 1990. Heterotrophic phytoplankton of the Black Sea in the early spring development of the phytocenosis. Oceanology, 30, 724729.Google Scholar
Tranvik, L. J., Porter, K. G. & Sieburth, J. McN., 1989. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia, 78, 473476.CrossRefGoogle ScholarPubMed
Underdal, B., Skulberg, O. M., Dahl, E. & Aune, T., 1989. Disastrous bloom of Chrysochromulina polylepis (Prymnesiophyceae) in Norwegian coastal waters 1988 - mortality in marine biota. Ambio, 18, 265270.Google Scholar
Wehr, J. D., Brown, L. M. & O'grady, K., 1985. Physiological ecology of the bloom-forming alga Chrysochromulina breviturrita (Prymnesiophyceae) from lakes influenced by acid precipitation. Canadian Journal of Botany, 63, 22312239.CrossRefGoogle Scholar