Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T05:02:32.676Z Has data issue: false hasContentIssue false

Metamorphosis of Pectin Aria Koreni (Annelida: Polychaeta) and Recruitment of an Isolated Population in the English Channel

Published online by Cambridge University Press:  11 May 2009

R. Lambert
Affiliation:
Muséum National d'Histoire Naturelle, Laboratoire Maritime de Dinard, 17 Avenue George V, BP 28, 35401 Dinard, France.
C. Retière
Affiliation:
Muséum National d'Histoire Naturelle, Laboratoire Maritime de Dinard, 17 Avenue George V, BP 28, 35401 Dinard, France.
Y. Lagadeuc*
Affiliation:
Station Marine, URA-CNRS 1363, BP 80, 62930 Wimereux, France.
*
Address for correspondence

Extract

In the Bay of Seine (English Channel) the polychaete Pectinaria koreni exhibits interannual stability in its abundance, despite its isolated distribution and its bentho-planktonic life cycle. To test the hypothesis of a high level of recruitment related to high survival rate of the post-larvae due to metamorphosis in the water column (transformation of metatrochophore into aulophore), we undertook a study of the morphology and the dynamics of the aulophore stage during May and June 1987. The morphological study snowed that aulophore larvae do not possess all the morphological features needed for benthic life on their first contact with the substratum. Fifteen days are needed to complete this development, and during this time the mortality rate is high. The possible role of this delayed metamorphosis on the transport of aulophore larvae towards sites favourable to adults is also discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amieva, M.R. & Reed, C.G., 1987. Functional morphology of the larval tentacles of Phragmatopoma californica (Polychaeta: Sabellaridae): composite larval and adult organs of multifunctional significance. Marine Biology, 95, 243258.CrossRefGoogle Scholar
Amieva, M.R., Reed, C.G. & Pawlik, J.R., 1987. Ultrastructure and behaviour of the larva of Phragmatopoma californica (Polychaeta: Sabellariidae): identification of sensory organs potentially involved in substrate selection. Marine Biology, 95, 259266.CrossRefGoogle Scholar
Avoine, J., 1986. Sediment exchanges between the Seine Estuary and its adjacent shelf, journal of the Geological Society, London, 144, 135148.CrossRefGoogle Scholar
Bachelet, G., 1990. Recruitment of soft sediment infaunal invertebrates: the importance of juvenile benthic stages. La Mer, 28, 199210. [Bulletin de la Société Franco-Japonaise d'Oceanographie.]Google Scholar
Bell, S.S. & Sherman, K.M., 1980. A field investigation of meiofaunal dispersal: tidal resuspension and implications. Marine Ecology Progress Series, 3, 245249.Google Scholar
Bhaud, M., 1988. Change in setal pattern during early development of Eupolymnia nebulosa (Polychaeta: Terebellidae) grown in simulated natural conditions. Journal of the Marine Biological Association of the United Kingdom, 68, 677687.CrossRefGoogle Scholar
Bhaud, M. & Cazaux, C., 1987. Description and identification of polychaete larvae; their implications in current biological problems. Oceanis, 13, 596753.Google Scholar
Bhaud, M.R. & Cazaux, C.P., 1990. Buoyancy characteristics of Lanice conchilega (Pallas) larvae (Terebellidae). Implications for settlement. Journal of Experimental Marine Biology and Ecology, 141, 3145.Google Scholar
Butman, C.A., 1986. Larval settlement of soft-sediment invertebrates: some predictions based on an analysis of near-bottom velocity profiles. In Marine interfaces ecohydrodynamics (ed. J.C.J., Nihoul), pp. 487513. Amsterdam: Elsevier. [Oceanography Series no. 42.]CrossRefGoogle Scholar
Butman, C.A., 1987. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanography and Marine Biology. Annual Review. London, 25, 113165.Google Scholar
Cabioch, L., ed., 1986. La baie de Seine. IFREMER-CNRS. [Actes de Colloques no. 4.]Google Scholar
Cabioch, L. & Gentil, F., 1975. Distribution des peuplements benthiques dans la partie orientale de la baie de Seine. Comptes Rendus de I'Académie des Sciences. Paris, Série D, 280, 571574.Google Scholar
Cameron, R.A., 1986. Introduction to the invertebrate larval biology work-shop: a brief background. Bulletin of Marine Science, 39, 145161.Google Scholar
Cazaux, C., 1981. Evolution et adaptation larvaires chez les polychètes. Oceanis, 7, 4377.Google Scholar
Dauvin, J.-C., 1992. Cinétique du recrutement et croissance des juvéniles d'Owenia fusiformis Delle Chiaje en baie de Seine (Manche orientale). Oceanologica Acta, 15, 187196.Google Scholar
Eckman, J.E., Savidge, W.B. & Gross, T.F., 1990. Relationship between duration of cyprid attachment and drag forces associated with detachment of Balanus amphitrite cyprids. Marine Biology, 107, 111118.CrossRefGoogle Scholar
Elkaïm, B. & Irlinger, J.P., 1987. Contribution a l'étude de la dynamique des populations de Pectinaria koreni Malmgren (Polychète) en baie de Seine orientale. Journal of Experimental Marine Biology and Ecology, 107, 171197.CrossRefGoogle Scholar
Frontier, S. & Pichod-Viale, D., 1993. Ecosystèmes. Structure, fonctionnement, évolution. Paris: Masson.Google Scholar
Gentil, F., Irlinger, J.P., Elkaïm, B. & Proniewski, F., 1986. Premières données sur la dynamique du peuplement macrobenthique des sables fins envasés à Abra alba de la baie de Seine orientale. Actes de Colloques, IFREMER no. 4, pp. 409–20.Google Scholar
Irlinger, J.P., Gentil, F. & Quintino, V., 1991. Reproductive biology of the polychaete Pectinaria koreni (Malmgren) in the Bay of Seine (English Channel). Ophelia, supplement 5, 343350.Google Scholar
Lagadeuc, Y., 1990. Processus hydrodynamiques. Dispersion larvaire et recrutement en régime mégatidal. Exemple de Pectinaria koreni (Annélide polychete) en baie de Seine (Manche). Thèse, Université de Lille.Google Scholar
Lagadeuc, Y., 1992a. Répartition verticale des larves de Pectinaria koreni en baie de Seine orientale: influence sur le transport et le recrutement. Oceanologica Ada, 15, 95104.Google Scholar
Lagadeuc, Y., 1992b. Transport larvaire en Manche. Exemple de Pectinaria koreni (Malmgren), annelide polychète, en baie de Seine. Oceanologica Ada, 15, 383395.Google Scholar
Lagadeuc, Y., Conti, P., Retière, C., Cabioch, L. & Dauvin, J.-C., 1990, Processus hydrodynamiques et recrutement de Pectinaria koreni, annélide polychète à cycle bentho-pélagique, en baie de Seine orientale. Oceanis, 16, 245256.Google Scholar
Lagadeuc, Y. & Retière, C., 1993. Critères d'identification rapide des stades de développement des larves de Pectinaria koreni (Malmgren) (Annelide Polychète) de la baie de Seine (Manche). Vie et Milieu, 43, 217224.Google Scholar
Lambert, R., 1991. Recrutement d'espèces benthiques à larves pélagiques en régime mégatidal. Cas de Pectinaria koreni (Malmgren), annélide polychète. Thèse, Université de Rennes.Google Scholar
Le Hir, P., Salomon, J.C., Le Provost, C., Chabert, D'hieres G. & Mauvais, J.L., 1986. Approche de la circulation résiduelle en baie de Seine. In La baie de Seine (ed. L., Cabioch), pp. 6372. IFREMER-CNRS. [Actes de Colloques no. 4.]Google Scholar
Loosanoff, V.L. & Davis, H.C., 1963. Rearing of bivalve molluscs. Advances in Marine Biology, 1, 1136.Google Scholar
Nichols, F.H., 1977. Dynamics and production of Pectinaria koreni (Malmgren) in Kiel Bay, west Germany. In Biology ofbenthic marine organisms. Proceedings of the 11th European symposium on marine biology (ed. B.F., Keegan), pp. 453–63. Oxford: Pergamon Press.Google Scholar
Nicolaïdou, A., 1983. Life history and productivity of Pectinaria koreni Malmgren (Polychaeta). Estuarine, Coastal and Shelf Science, 17, 31–3.CrossRefGoogle Scholar
Palmer, M.A., 1984. Invertebrate drift: behavioral experiments with intertidal meiobenthos. Marine Behaviour and Physiology, 10, 235253.Google Scholar
Palmer, M.A., 1986. Hydrodynamics and structure: interactive effects on meiofaunal dispersal. Journal of Experimental Marine Biology and Ecology, 104, 5368.CrossRefGoogle Scholar
Palmer, M.A. & Gust, G., 1985. Dispersal of meiofauna in a turbulent tidal creek. Journal of Marine Research, 43, 179210.Google Scholar
Rasmussen, E., 1973. Systematics and ecology of the Isefjord marine fauna (Danmark) with a survey of the eelgrass (Zostera) vegetation and its communities. Ophelia, 11, 1507.CrossRefGoogle Scholar
Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the sound (Oresund). Meddelelser fra Kommissionen for Danmarks Fiskeri- Og Havundersogelser, Serie Plankton, 4, 1523.Google Scholar
Vovelle, J., 1973. Evolution de la taille des grains du tube arenace en fonction de la croissance chez Pectinaria (Lagis) koreni Malmgren (polychète sédentaire). Ophelia, 10, 169184.CrossRefGoogle Scholar
Vovelle, J. & Grasset, M., 1990. Données nouvelles sur la formation et la composition du tube larvaire de Pectinaria (Lagis) koreni Malmgren (annelide polychete). Cahiers de Biologie Marine, 31, 333348.Google Scholar
Watson, A.T., 1928. Observations on the habits and life-history of Pectinaria (Lagis) koreni, Mgr. Proceedings and Transactions of the Liverpool Biological Society, 42, 2560.Google Scholar