Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T06:44:27.176Z Has data issue: false hasContentIssue false

Extracellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymnesium parvum

Published online by Cambridge University Press:  11 May 2009

A. F. H. Marker
Affiliation:
Department of Botany, Westfield College, University of London

Extract

The production of extracellular carbohydrate has been studied in Isochrysis galbana and Prymnesium parvum in axenic culture. Increased extracellular production of carbohydrate occurred at reduced and increased salinity, low light intensity and under conditions of nitrogen starvation in Isochrysis, and in some cases appeared to be associated with the sedimentation of the cells from stagnant culture. Extracellular carbohydrate production was found to be greatest during the early and later stages in growth and dropped to a minimum during the mid-growth phase. Experiments indicated that the cells were not being damaged during harvesting of the cultures. A close similarity was found between the monosaccharide components of the intra- and extracellular carbohydrate after acid hydrolysis; both contained glucose, galactose, arabinose, xylose and ribose. It is suggested that the production of most of the extracellular carbohydrate is due to the passive release of organic matter from dead or dying cells.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aach, H. G., 1952. U¨ber Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstarken und Nitratmengen, Arch. Mikrobiol., Bd. 17, pp. 213–46.CrossRefGoogle Scholar
Archibald, A. R., Manners, D. J. & Ryley, , 1958. Structure of a reserve polysaccharide (leucosin) fromOchromonas malhamensis. Chemy Ind., 1958, pp. 1516–17.Google Scholar
Bishop, C. T., Adams, G. A. & Hughes, E. D., 1954. A polysaccharide from the blue green alga Anabaena cylindrica. Can. J. Chem. Vol. 32, pp. 9991004.CrossRefGoogle Scholar
Bongers, L. H. J., 1956. Aspects of nitrogen assimilation by cultures of gree algae. Meded. LandbHoogesch. Wageningen, Vol. 56, pp. 152.Google Scholar
Carter, N., 1937. New or interesting algae from brackish waters. Arch. Protistenk., Bd. 90, pp. 168.Google Scholar
Clendinning, K. A. & Brown, T. E., 1956. Photosynthesis in heavily centrifuged algae. Physiologia PL, Vol. 9, pp. 515–18.Google Scholar
Collier, A., 1958. Some biochemical aspects of red tides and related oceanographic problems. Limnol. Oceanogr., Vol. 3, pp. 33–9.CrossRefGoogle Scholar
Collier, D. M. & Fogg, G. E., 1955. Studies on fat accumulation by algae. J. exp. Bot., Vol. 6, pp. 256–75.CrossRefGoogle Scholar
Fales, F. W., 1951. The assimilation and degradation of carbohydrates by yeast cells. J. biol. Chem., Vol. 193, pp. 113–24.CrossRefGoogle ScholarPubMed
Fogg, G. E., 1959. Nitrogen nutrition and metabolic patterns in algae. Symp. Soc. exp. Biol., Vol. 13, pp. 106–25.Google Scholar
Fritsch, F. E.J 1945. The Structure and Reproduction of the Algae, Vol. 11. Cambridge University Press.Google Scholar
Guillard, A. L. & Wangersky, P. J., 1958. The production of extracellular carbohydrates by some marine flagellates. Limnol. Oceanogr., Vol. 3, pp. 449–54.CrossRefGoogle Scholar
Hagedorn, H. C. & Jensen, B., 1923. Zur Mikrobestimmung des Blutzuckers mittels Ferricyanid. Biochem. Z., Bd. 135, pp. 4658.Google Scholar
Hanes, C. S., 1929. An application of the method of Hagedorn and Jensen to the determination of larger quantities of reducing sugars. Biochem. J., Vol. 23, pp. 99106.CrossRefGoogle Scholar
Hewitt, B. R., 1958. The spectrophotometric determination of total carbohydrate. Nature, Lond., Vol. 182, pp. 246–7.Google ScholarPubMed
Hough, L., Jones, J.K.N & Wadman, W. H., 1952. An investigation of the polysaccharide components in certain fresh water algae. J. chem. Soc, 1952, Pt. 3, PP 3393–9Google Scholar
Hulme, A. C. & Narain, R., 1931. The ferricyanide method for determining reducing sugars. Biochem. J., Vol. 25, pp. 1051–61.CrossRefGoogle ScholarPubMed
Johnson, M. J., 1949. A rapid micromethod for the estimation of non-volatile organic matter. J. biol. Chem., Vol. 181, pp. 707–11.CrossRefGoogle ScholarPubMed
Kain, , Joanna, M. & Fogg, G. E., 1958. Studies on the growth of marine phytoplankton. II.IsochrysisgalbanaPaike. J. mar. biol. Ass. U.K., Vol. 37, pp. 781–8.CrossRefGoogle Scholar
Krogh, A., 1931. Dissolved substances as food for aquatic organisms. Biol. Rev., Vol. 6, pp. 412–44.CrossRefGoogle Scholar
Lasker, R. & Holmes, R., 1957. Variability in retention of marine phytoplankton by membrane filters. Nature, Lond., Vol. 180, pp. 1295–6.Google Scholar
Lewin, R. A., 1956. Extracellular polysaccharides of green algae. Can. J. Microbioh, Vol. 2, pp. 665–72.CrossRefGoogle Scholar
Lewin, R. A., 1957. Four new species ofChlamydomonas. Can. J. Biol., Vol. 35, pp. 321–6.Google Scholar
Lewis, G. J. & Rakestraw, , 1955. Carbohydrates in sea water. J. mar. Res., Vol. 14, pp. 253–8.Google Scholar
Mclaughlin, J. J. A., Zahl, P. A., Nowak, A., Marchisotto, J. & Prager, J., 1960. Mass Cultivation Of Some Phytoplankton. Ann. N.Y. Acad. Sci., Vol. 90, pp. 856–65.Google Scholar
Oorschot, , Van, J. L. P., 1955. Conversion of light energy in algal culture. Meded. LandbHoogesch., Wageningen, Vol. 55, pp. 225–71.Google Scholar
Parke, M., 1949. Studies on marine flagellates. J. mar. Biol. ass. U.K., Vol. 28, pp. 255–85.CrossRefGoogle Scholar
Partridge, S. M., 1949. Alanine hydrogen phthalate as a spray reagent for chromatography of sugars. Nature, Lond., Vol. 164, p. 433.CrossRefGoogle Scholar
Pearsall, W. H. & Loose, L., 1937. The growth ofChlorella vulgaris in pure culture. Proc. Roy. Soc. B, Vol. 121, pp. 451501.Google Scholar
Provasoli, L., Mclaughlin, J. J. A. & Droop, M. R., 1957. The development of artificial media for marine algae. Arch. Mikrobiol., Bd. 2, pp. 292428.Google Scholar
Putter, A., 1908. Der Stoffhausholt des Meeres. Z. allg. Physiol., Bd. 7, pp. 283320.Google Scholar
Trevelyan, W. E., Proctors, D. P. & Harrison, J. S., 1950. Detection of sugars on paper chromatograms. Nature, Lond., Vol. 166, pp. 444–5.CrossRefGoogle ScholarPubMed
Viles, F. J. & Silverman, L., 1949. Determination of starch and cellulose with anthrone. Analyt. Chem., Vol. 21, pp. 950–3.CrossRefGoogle Scholar
Wangersky, P. J. & Guillard, R. J., 1960. Low molecular weight organic base from the dinoflagellate,Amphidinium carteri. Nature, Lond., Vol. 185, pp. 689–90.CrossRefGoogle Scholar
Yemm, E. W. & Willis, A. J., 1954. The estimation of carbohydrates in plant ex-tracts by anthrone. Biochem. J., Vol. 57, pp. 508–14.CrossRefGoogle Scholar