Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:19:30.709Z Has data issue: false hasContentIssue false

Community structure of Harpacticoida and Canuelloida (Crustacea, Copepoda) on the Great Meteor Seamount (North-east Atlantic Ocean)

Published online by Cambridge University Press:  24 June 2019

Karin Richter*
Affiliation:
Senckenberg am Meer, German Centre for Marine Biodiversity Research, Südstrand 44, D-26382 Wilhelmshaven, Germany
Kai Horst George
Affiliation:
Senckenberg am Meer, German Centre for Marine Biodiversity Research, Südstrand 44, D-26382 Wilhelmshaven, Germany
*
Author for correspondence: Karin Richter, E-mail: [email protected]

Abstract

During the expedition POS397 ‘GroMet’ in 2010 the sediments of the Great Meteor Seamount (GMS) plateau were sampled quantitatively for the first time, allowing statistical analysis of the community structure of Harpacticoida and Canuelloida. Analysis of similarity revealed no differences between three geographic regions at family/species level. Analysis of diversity indicated slightly greater diversity in the south, with more species belonging to more genera/families. Dispersal opportunities possibly occurring at the plateau (emergence, erosion, rafting) are discussed. Of 18 investigated families 106 species were identified, but only 5.66% were already scientifically known and widely distributed. Within the investigated families, 37.74% of the species belonged to shallow-water genera, leading to the conclusion that the plateau was once connected to shallow-water habitats, perhaps functioning as a stepping stone, but is now geographically isolated. This isolation is most likely due to seafloor spreading of the Atlantic Ocean and descending of the GMS. On the plateau, six species with wider distribution ranges were present, indicating that species may arrive accidentally, but their means of settlement remains unknown. Comparisons of the identified GMS plateau fauna with that of other seamounts and mid-oceanic islands revealed similar communities at family level, but at species level the GMS shares only one species with the Seine Seamount; all other elevations had more species in common. Hence, the GMS plateau is considered to be isolated regarding benthic Copepoda but may play an important role in meiofaunal species distribution, as it represents a shallow-water habitat within the deep sea.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtziger, R, Nigmann, U and Zwölfer, H (1992) Rarefaction-Methoden und ihre Einsatzmöglichkeiten bei der zooökologischen Zustandsanalyse und Bewertung von Biotopen. Zeitschrift für Ökologie und Naturschutz 1, 89105.Google Scholar
Anger, K and Scheibel, W (1976) Die benthische Copepodenfauna in einem ufernahen Verschmutzungsgebiet der westlichen Ostsee. Helgoländer wissenschaftliche Meeresuntersuchungen 28, 1930.Google Scholar
Armonies, W (1990) Short-term changes of meiofaunal abundance in intertidal sediments. Helgoländer Meeresuntersuchungen 44, 375386.Google Scholar
Arroyo, NL, Aarnio, K and Bonsdorff, E (2006) Drifting algae as a means of re-colonizing defaunated sediments in the Baltic Sea: a short-term microcosm study. Hydrobiologia 554, 8395.Google Scholar
Bakalem, A, Ruellet, T and Dauvin, JC (2009) Benthic indices and ecological quality of shallow Algeria fine sand community. Ecological Indicators 9, 395408.Google Scholar
Beckmann, A and Mohn, C (2002) The upper ocean circulation at Great Meteor Seamount, Part II: retention potential of the seamount-induced circulation. Ocean Dynamics 52, 194204.Google Scholar
Blain, S, Guieu, C, Claustre, H, Leblanc, K, Moutin, T, Quéguiner, B, Ras, J and Sarthou, G (2004) Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnology and Oceanography 49, 20952104.Google Scholar
Bodin, P (1984) Densité de la meiofauna et peuplements de copépodes harpacticoïdes en Baie de Douarnenez (Finistère). Annales de l'Institut Océanographique, Monaco 60, 517.Google Scholar
Bodin, P (1991) Perturbations in the reproduction cycle of some harpacticoid copepod species further to the Amoco Cadiz oil spill. Hydrobiologia 209, 245257.Google Scholar
Bodin, P and Leguellec, C (1992) Meiobenthos of the Bay of Saint-Brieuc (North Brittany, France). 2. Harpacticoid copepod diversity and species assemblages. Oceanologica Acta 15, 673686.Google Scholar
Brenke, N (2002) The benthic community of the Great Meteor Bank. Oceanography and ecology of seamounts – indications of unique ecosystems; Documents and ICES Annual Report for 2002. ICES ASC CM 2002/M-30, Copenhagen.Google Scholar
Büntzow, M (2011) Vergleichende gemeinschaftsanalytische und taxonomische Untersuchungen der Harpacticoidenfauna der Seeberge „Sedlo” und „Seine” (nördlicher Mittelatlantik) (PhD thesis). Carl-von-Ossietzky-Universität, Oldenburg, Germany.Google Scholar
Chertoprud, ES, Chertoprud, MV, Kondar, DV, Kornev, PN and Udalov, AA (2006) Harpacticoida taxocen diversity in the silty-sandy littoral zone of Kandalaksha Bay of the White Sea. Oceanology 46, 492500.Google Scholar
Chertoprud, ES, Chertoprud, MV, Garlitskaya, LA, Azovsky, AI and Kondar’, DV (2007) Spatial variability of the structure of the Harpacticoida (Copepoda) crustacean assemblages in intertidal and shallow-water zones of European seas. Oceanology 47, 5159.Google Scholar
Chertoprud, ES, Frenkel, SE, Novichkova, AA and Vodop'yanov, SS (2014) Harpacticoida (Copepoda) fauna and the taxocenes structure of brackish lagoons and estuaries of the Russian Far East. Oceanology 54, 739751.Google Scholar
Clarke, KR and Warwick, RM (1998) A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35, 523531.Google Scholar
Colwell, RK and Coddington, JA (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences 345, 101118.Google Scholar
Denda, A and Christiansen, B (2011) Zooplankton at a seamount in the eastern Mediterranean: distribution and trophic interactions. Journal of the Marine Biological Association of the United Kingdom 91, 3349.Google Scholar
Drzycimski, I (1968) Neue Harpacticoida (Copepoda) aus dem westnorwegischen Küstengebiet. Sarsia 31, 1524.Google Scholar
Duncan, RA (1984) Age progressive volcanism in the New England Seamounts and the opening of the Central Atlantic Ocean. Journal of Geophysical Research 89, 99809990.Google Scholar
Faust, MA and Gulledge, RA (1996) Associations of microalgae and meiofauna in floating detritus at a mangrove island, Twin Cays, Belize. Journal of Experimental Marine Biology and Ecology 197, 159175.Google Scholar
Feller, RJ (1980) Quantitative cohort analysis of a sand-dwelling meiobenthic harpacticoid copepod. Estuarine and Coastal Marine Science 11, 459476.Google Scholar
Fischer, L (2005) Der Einfluss der Großen Meteorbank auf die Ernährungsbiologie und Verteilung dominanter Calanoida (Crustacea, Copepoda). Berichte zur Polar- und Meeresforschung 499, 1202.Google Scholar
Fleeger, JW and Gee, JM (1986) Does interference competition determine the vertical distribution of meiobenthic copepods? Journal of Experimental Marine Biology and Ecology 95, 173181.Google Scholar
Gad, G (2009) Colonization and speciation on seamounts, evidence from Draconematidae (Nematoda) of the Great Meteor Seamount. Marine Biodiversity 39, 5769.Google Scholar
Gad, G and Schminke, HK (2004) How important are seamounts for the dispersal of interstitial meiofauna? Archive for Fishery and Marine Research 51, 4354.Google Scholar
Geldmacher, J, Hoernle, K, Hanan, BB, Blichert-Toft, J, Hauff, F, Gill, JB and Schminke, HU (2011) Hafnium isotopic variations in East Atlantic intraplate volcanism. Contributions Mineralogy Petrology 162, 2136.Google Scholar
George, KH (1999) Gemeinschaftsanalytische Untersuchungen ausgewählter Harpacticoida der Magellanregion, sowie erste similaritatsanalytische Vergleiche mit Assoziationen der Antarktis. Berichte zur Polarforschung 327, 1187.Google Scholar
George, KH (2004 a) Description of two new species of Bodinia, a new genus incertae sedis in Argestidae Por, 1986 (Copepoda, Harpacticoida), with reflections on argestid colonization of the Great Meteor Seamount plateau. Organisms, Diversity and Evolution 4, 241264.Google Scholar
George, KH (2004 b) Meteorina magnifica gen. et sp. nov., a new Idyanthidae (Copepoda, Harpacticoida) from the plateau of the Great Meteor Seamount (North Atlantic). Meiofauna Marina 13, 95112.Google Scholar
George, KH (2005) Sublittoral and bathyal Harpacticoida (Crustacea, Copepoda) of the Magellan region. Composition, distribution and species diversity of selected major taxa. Scientia Marina 69, 147158.Google Scholar
George, KH (2006) New Ancorabolinae Sars, 1909 (Crustacea: Copepoda: Harpacticoida) of the Atlantic Ocean. Description of Pseudechinopsyllus sindemarkae gen. et sp. nov. and Dorsiceratus ursulae sp. nov. from the Great Meteor Seamount, and redescription of D. octocornis Drzycimski, 1967, and D. triarticulatus Coull, 1973 (part.). Meiofauna Marina 15, 123156.Google Scholar
George, KH (2010) POS397 Abschlussbericht. Deutsches Zentrum für Marine Biodiversitätsforschung, Senckenberg am Meer, Wilhelmshaven, Germany.Google Scholar
George, KH (2013) Faunistic research on metazoan meiofauna from seamounts – a review. Meiofauna Marina 20, 132.Google Scholar
George, KH and Schminke, HK (2002) Harpacticoida (Crustacea, Copepoda) of the Great Meteor Seamount, with first conclusions as to the origin of the plateau fauna. Marine Biology 144, 887895.Google Scholar
George, KH, Veit-Köhler, G, Martínez Arbizu, P, Seifried, S, Rose, A, Willen, E, Bröhldick, K, Corgosinho, PH, Drewes, J, Menzel, L, Moura, G and Schminke, KH (2014) Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the deep sea of the Angola Basin (Southeast Atlantic). Organisms, Diversity and Evolution 14, 5773.Google Scholar
George, KH, Pointner, K and Packmor, J (2018) The benthic Copepoda (Crustacea) of Anaximenes Seamount (eastern Mediterranean Sea) – taxa diversity, community structure and distribution. Progress in Oceanography 165, 299316.Google Scholar
Gerlach, SA (1977) Means of meiofauna dispersal. Mikrofauna Meeresboden 61, 89103.Google Scholar
Gheerardyn, H, De Troch, M, Vincx, M and Vanreusel, A (2009) Harpacticoida (Crustacea: Copepoda) associated with cold-water coral substrates in the Porcupine Seabight (NE Atlantic): species composition, diversity and reflections on the origin of the fauna. Scientia Marina 73, 747760.Google Scholar
Giere, O (2009) Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments, 2nd Edn. Berlin: Springer Verlag.Google Scholar
Gray, JS (1984) Ökologie Mariner Sedimente. Berlin: Springer Verlag.Google Scholar
Grevemeyer, I (1994) Der Atlantis-Meteor Seamount Komplex (PhD thesis). Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Institut für Geophysik, Hamburg, Germany.Google Scholar
Hagerman, GM and Rieger, RM (1981) Dispersal of benthic meiofauna by wave and current action in Bogue Sound, North Carolina, USA. Marine Ecology 2, 245270.Google Scholar
Harris, RP (1972) Seasonal changes in population density and vertical distribution of harpacticoid copepods on an intertidal sand beach. Journal of the Marine Biological Association of the United Kingdom 52, 493505.Google Scholar
Heaman, LM and Kjarsgaard, BA (2000) Timing of eastern North American kimberlite magmatism: continental extension of the Great Meteor hotspot track? Earth and Planetary Science Letters 178, 253268.Google Scholar
Heinz, P, Ruepp, D and Hemleben, C (2004) Benthic foraminifera assemblages at Great Meteor Seamount. Marine Biology 144, 985998.Google Scholar
Heltshe, JF and Forrester, NE (1983) Estimating species richness using the Jackknife procedure. Biometrics 39, 111.Google Scholar
Hesemann, F (2013) Genese der bioklastischen Sedimente der Großen Meteorbank (Atlantik) (Bachelor thesis). University of Bremen, Bremen, Germany.Google Scholar
Hicks, GRF (1988) Sediment rafting: a novel mechanism for the small-scale dispersal of intertidal estuarine meiofauna. Marine Ecology Progress Series 48, 6980.Google Scholar
Hicks, GRF and Coull, BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Annual Review of Oceanography and Marine Biology 21, 67175.Google Scholar
Hinz, K (1969) The Great Meteor Seamount. Results of seismic reflection measurements with a pneumatic sound source, and their geological interpretation. Meteor Forschungs-Ergebnisse C 2, 6377.Google Scholar
Hirch, S (2009) Trophic interactions at seamounts. (PhD thesis). Universität of Hamburg, Hamburg, Germany.Google Scholar
Hockin, DC (1983) The effects of organic enrichment upon a community of meiobenthic harpacticoid copepods. Marine Environmental Research 10, 4558.Google Scholar
Houle, A (1999) The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model. American Journal of Physical Anthropology 109, 541559.Google Scholar
Hubbs, CL (1959) Initial discoveries of fish faunas on seamounts and offshore banks in the eastern Pacific. Pacific Science 13, 311316.Google Scholar
Huys, R and Conroy-Dalton, S (1993) Willemsia gen. nov. and Boreopontia Willems, 1981 revisited (Harpacticoida: Cylindropsyllidae). Sarsia 78, 237300.Google Scholar
Huys, R, Gee, JM, Moore, CG and Hamond, R (1996) Marine and brackish water harpacticoid copepods. Part 1. Synopses of the British Fauna 51, 1352.Google Scholar
Jakubisiak, S (1930) Notatka o skorupiakach widłonogich z grupy Harpacticoida Zatoki Puckiejk. Fragmenta Faunistica 1, 1319.Google Scholar
Jakubisiak, S (1933) Les Harpacticoïdes d'eaux saumâtres de Roscoff. Description d'une forme nouvelle. Bulletin de la Société Zoologique de France 58, 1317.Google Scholar
Klie, W (1913) Die Copepoda Harpacticoida des Gebietes der Unter- und Aussenweser und der Jade. Seperate Schriften des Vereins für Naturkunde an der Unterweser 3, 149.Google Scholar
Klie, W (1929) Die Copepoda Harpacticoida der südlichen und westlichen Ostsee mit besonderer Berücksichtigung der Sandfauna der Kieler Bucht. Zoologische Jahrbücher, Abteilung für Systematik 57, 329386.Google Scholar
Koller, S and George, KH (2011) Description of a new species of Zosime boeck, 1872 (Copepoda: Harpacticoida: Zosimeidae) from the Great Meteor Seamount, representing one of the few eurybathic Harpacticoida among the distinct plateau and deep-sea assemblages. Meiofauna Marina 19, 109126.Google Scholar
Kornev, PN and Chertoprud, ES (2008) Harpacticoid Copepods From the White Sea: Morphology, Systematics, Ecology. Moscow: KMK Scientific Press.Google Scholar
Kuhnert, J, Veit-Köhler, G, Büntzow, M and Volkenborn, N (2010) Sediment-mediated effects of lugworms on intertidal meiofauna. Journal of Experimental Marine Biology and Ecology 387, 3643.Google Scholar
Kunz, H (1935) Zur Ökologie der Copepoden Schleswig-Holsteins und der Kieler Bucht. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 21, 84132.Google Scholar
Kunz, H (1938) Die sandbewohenden Copepoden von Helgoland, I. Teil. (Studien an marinen Copepoden. II). Kieler Meeresforschungen 2, 223253.Google Scholar
Lang, K (1936) Undersökningar över Öresund. Untersuchungen aus dem Öresund. XX. Harpacticiden aus dem Öresund. Acta Universitatis Lundensis 2 31, 152.Google Scholar
Lasker, R, Wells, J and McIntyre, A (1970) Growth, reproduction, respiration and carbon utilization of the sand-dwelling harpacticoid copepod, Asellopsis intermedia. Journal of the Marine Biological Association of the United Kingdom 50, 147160.Google Scholar
Letova, VN (1982) Harpacticoida (Crustacea, Copepoda) from the mud-sandy littoral of the east Murman. Harpacticoida (Crustacea, Copepoda) ilisto peschano litorali vostochnogo Murmana. In Skarlato, OA (ed.) Bespozvonochnye Pribrezhnykh Biotsenozov Severnogo Ledovitego. Marine Invertebrates of Coastal Biocenoses of the Arctic Ocean and the Pacific Ocean. Issledovaniya Fauny Morei vol. 29. Leningrad: Nauka pp. 4675.Google Scholar
Martin, B and Nellen, W (2004) Composition and distribution of zooplankton at the Great Meteor Seamount, subtropical north-east Atlantic. Archive of Fishery and Marine Research 51, 89100.Google Scholar
Mendonça, A, Arístegui, J, Vilas, JC, Montero, MF, Ojeda, A, Espino, M and Martins, A (2012) Is there a seamount effect on microbial community structure and biomass? The case study of Seine and Sedlo seamounts (Northeast Atlantic). PLoS ONE 7, e29526.Google Scholar
Mielke, W (1975) Systematik der Copepoda eines sandstrandes der Nordseeinsel Sylt. Mikrofauna Meeresbodens 52, 1134.Google Scholar
Mohn, C (2010) Spotlight 5: Great Meteor Seamount. Oceanography 23, 106107.Google Scholar
Mohn, C and Beckmann, A (2002) The upper ocean circulation at Great Meteor Seamount. Part I: structure of density and flow fields. Ocean Dynamics 52, 179193.Google Scholar
Monard, A (1937) Les Harpacticoïdes marins de la région d'Alger et de Castiglione. Bulletin de la Station d'Aquiculture et de Pêche Castiglione 1935, 993.Google Scholar
Morgan, JW (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94, 123139.Google Scholar
Moura, G and Pottek, M (1998) Selenopsyllus, a new genus of Cylindropsyllinae (Copepoda, Harpacticoida) from Atlantic and Antarctic Deep Waters. Senckenbergiana Maritima 28, 185209.Google Scholar
Mouriño, B, Fernández, E, Serret, P, Harbour, D, Sinha, B and Pingree, R (2001) Variability and seasonality of physical and biological fields at the Great Meteor Tablemount (subtropical NE Atlantic). Oceanologica Acta 24, 120.Google Scholar
Müller, RD, Royer, J and Lawver, LA (1993) Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275278.Google Scholar
Oh, CW, Hartnoll, RG and Nash, RD (2001) Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of man, Irish Sea. Marine Ecology Progress Series 214, 211223.Google Scholar
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O'Hara, RB, Simpson, GL, Solymos, P, Stevens, MHH, Szoecs, E and Wagner, H (2017) Vegan: Community Ecology Package. R package version 2.4-3. Available at https://CRAN.R-project.org/package=vegan.Google Scholar
Packmor, J and George, KH (2016) Littoral Harpacticoida (Crustacea: Copepoda) of Madeira and Porto Santo (Portugal). Journal of the Marine Biological Association of the United Kingdom, 112. https://doi.org/10.1017/S0025315416001168.Google Scholar
Packmor, J and Riedl, T (2016) Records of Normanellidae Lang, 1944 (Copepoda, Harpacticoida) from Madeira island support the hypothetical role of seamounts and oceanic islands as “stepping stones” in the dispersal of marine meiofauna. Marine Biodiversity 46, 861877.Google Scholar
Packmor, J, Müller, F and George, KH (2015) Oceanic islands and seamounts as staging posts for Copepoda Harpacticoida (Crustacea) – shallow-water Paramesochridae Lang, 1944 from the North-East Atlantic Ocean, including the (re-) description of three species and one subspecies from the Madeiran Archipelago. Progress in Oceanography 131, 5981.Google Scholar
Palmer, MW (1990) The estimation of species richness by extrapolation. Ecology 71, 11951198.Google Scholar
Palmer, MW (1991) Estimating species richness: the second order Jackknife reconsideration. Ecology 72, 15121513.Google Scholar
Palmer, MA and Gust, G (1985) Dispersal of meiofauna in a turbulent tidal creek. Journal of Marine Research 43, 179210.Google Scholar
Pfeifer, D, Bäumer, P, Dekker, R and Schleier, U (1998) Statistical tools for monitoring benthic communities. Senckenbergiana Maritima 29, 6376.Google Scholar
Piepenburg, D and Müller, B (2004) Distribution of epibenthic communities on the Great Meteor Seamount (North-east Atlantic) mirrors pelagic processes. Archive of Fishery and Marine Research 51, 5570.Google Scholar
Plum, C and George, KH (2009) The paramesochrid fauna of the Great Meteor Seamount (Northeast Atlantic) including the description of a new species of Scottopsyllus (intermedopsyllus) Kunz (Copepoda, Harpacticoida, Paramesochridae). Marine Biodiversity 39, 265289.Google Scholar
Pointner, K (2015) Description of a new species of Microcanuella Mielke, 1994 (Copepoda: Polyarthra: Canuellidae) from the Great Meteor Seamount plateau (subtropical NE Atlantic Ocean), with remarks on the geographical distribution of the genus. Zoologischer Anzeiger 259, 97112.Google Scholar
Pointner, K (2017) Description of two new species of Zosime (Copepoda: Harpacticoida: Zosimeidae), including remarks on its phylogeny and distribution on the Great Meteor Seamount plateau (North-east Atlantic Ocean). Journal of Natural History 51, 22832330.Google Scholar
Pointner, K (in press) A new genus and four new species of Cylindropsyllidae (Copepoda: Harpacticoida) of the Great Meteor Seamount plateau (North-east Atlantic Ocean), with remarks on the geographical distribution of this taxon. Marine Biodiversity. doi: 10.1007/s12526-019-00953-z.Google Scholar
Pointner, K, Kihara, TC, Glatzel, T and Veit-Köhler, G (2013) Two new closely related deep-sea species of Paramesochridae (Copepoda, Harpacticoida) with extremely differing geographical range sizes. Marine Biodiversity 43, 293319.Google Scholar
Poppe, SA (1884) Ein neues Coepoden-Genus aus der Jade. Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen 9, 5758.Google Scholar
Pratt, RM (1963) Great Meteor Seamount. Deep-Sea Research 10, 1725.Google Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Sars, GO (1909) An Account of the Crustacea of Norway. Volume V. Copepoda Harpacticoida. Bergen: Bergen Museum.Google Scholar
Schizas, NV and Shirley, TC (1996) Seasonal changes in structure of an Alaskan intertidal meiofaunal assemblage. Marine Ecology Progress Series 133, 115124.Google Scholar
Scotese, CR (1991) Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 493501.Google Scholar
Scott, T (1895) Additions to the fauna of the Firth of Forth. Part VII. Annual Report of the Fishery Board for Scotland, Edinburgh 13, 165173.Google Scholar
Scott, A (1896) Description of new and rare Copepoda. In Report on the investigations carried on in 1895 in connection with the Lancashire Sea-Fisheries Laboratory at University College, Liverpool. Proceedings and Transactions of the Liverpool Biological Society 10, 134185.Google Scholar
Scott, T (1899) Notes on recent gatherings of micro-Crustacea from the Clyde and the Moray Firth. Report of the Fishery Board of Scotland 17, 248273.Google Scholar
Scott, T (1900) Notes on some Crustacea from Fairlie and Hunterston, Firth of Clyde. Transactions of the Natural History Society of Glasgow, New Series 5, 346355.Google Scholar
Scott, T (1903) On some new and rare Crustacea collected at various times in connection with the investigations of the Fishery Board for Scotland. Report of the Fishery Board of Scotland 21, 109135.Google Scholar
Scott, T and Scott, A (1895) On some new and rare Crustacea from Scotland. Annals and Magazine of Natural History 6, 5059.Google Scholar
Seifried, S and Schminke, HK (2003) Phylogenetic relationships at the base of Oligoarthra (Copepoda, Harpacticoida) with a new species as the cornerstone. Organisms Diversity and Evolution 3, 1337.Google Scholar
Shannon, CE and Weaver, W (1963) The Mathematical Theory of Communication. Champaign, IL: University of Illinois Press.Google Scholar
Simenstad, CA, Cordell, JR and Weitkamp, LA (1991) Effects of Substrate Modification on Littoral Flat Meiofauna: Assemblage Structure Changes Associated with Adding Gravel. Seattle, WA: Wetland Ecosystem Team, Fisheries Research Institute, University of Washington.Google Scholar
Song, SJ, Rho, HS and Kim, W (2007) A new species of Huntemannia (copepoda: Harpacticoida: Huntemaniidae) from the Yellow Sea, Korea. Zootaxa 1616, 3748.Google Scholar
Tardent, P (2005) Meeresbiologie – eine Einführung, 3rd Edn. Stuttgart: Georg Thieme Verlag.Google Scholar
Thistle, D and Sedlacek, L (2004) Emergent and non-emergent species of harpacticoid copepods can be recognized morphologically. Marine Ecology Progress Series 266, 195200.Google Scholar
Ulrich, J (1971) Zur topographie und morphologie der großen Meteorbank. Meteor Forschungs-Ergebnisse Reihe C 6, 4868.Google Scholar
van Damme, D, Heip, C and Willems, KA (1984) Influence of pollution on the harpacticoid copepods of two North Sea estuaries. Hydrobiologia 112, 143160.Google Scholar
van den Bogaard, P (2013) The origin of the Canary Island Seamount Province – new ages of old seamounts. Scientific Reports 3, 2107.Google Scholar
van Haren, H (2005) Details of stratification in a sloping bottom boundary layer of Great Meteor Seamount. Geophysical Research Letters 32, L07606.Google Scholar
Wells, JBJ (2007) An annotated checklist and keys to the species of Copepoda Harpacticoida (Crustacea). Zootaxa 1568, 1872.Google Scholar
Wendt, I, Kreuzer, H, Müller, P, von Rad, U and Raschka, H (1976) K–Ar age basalts from Great Meteor and Josephine seamounts (eastern North Atlantic). Deep-Sea Research 23, 849862.Google Scholar
Wieser, W (1959) The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget Sound. Limnology and Oceanography 4, 181194.Google Scholar
Wild, F (2015) LSA: Latent Semantic Analysis. R package version 0.73.1. https://CRAN.R-project.org/package=lsa.Google Scholar
Willems, KA (1981) Boreopontia heipi ng., n. sp. An interstitial harpacticoid (Copepoda) from the Southern Bight of the North Sea. Biologisch Jaarboek Dodonaea 49, 200209.Google Scholar
Supplementary material: File

Richter and George supplementary material

Tables S1 and S2

Download Richter and George supplementary material(File)
File 64.9 KB