Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T20:54:18.606Z Has data issue: false hasContentIssue false

Catechol Oxidase in the Byssus of the Common Mussel, Mytilus Edulis L.

Published online by Cambridge University Press:  11 May 2009

J. Herbert Waite
Affiliation:
Orthopaedics Research Laboratory, University of Connecticut Health Center, Farmington, CT 06032

Extract

The common mussel inhabits an environment of fluctuating temperatures, salinities and water turbulence. To help cope with these stresses, mussels have evolved some extraordinary structural and biochemical adaptations. The production of the byssus is one such adaptation. The byssus is a complex array of threads and adhesive plaques that serves alternatively to attach the mussel to solid objects, to absorb shock, or to scale a vertical face (Waite, 1983 a; Price, 1983). Because of its location outside the animal's living tissues, the byssus cannot count on the same kind of repair and remodelling offered to structures within the animal. The byssus is thus confronted with two conflicting demands. One is to be a mechanically dynamic structure shielding the animal against the buffeting impact of waves; the other is to be chemically inert towards the hydrolytic action of sea water and microbial enzymes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. A., Cook, M., Jackson, D. J., Preston, S. & Worth, E. M., 1976. Observations on the rate of production and mechanical properties of the byssus threads of Mytilus edulis L. Journal of Molluscan Studies, 42, 279289.Google Scholar
Andersen, S. O., 1981. The stabilization of locust cuticle. Journal of Insect Physiology, 27, 393396.CrossRefGoogle Scholar
Bharathi, N. & Ramalingam, K., 1983. Electrophoretic study of the enzyme phenoloxidase from the enzyme gland in the foot of Perna viridis (L.). Journal of Experimental Marine Biology and Ecology, 70, 123128.CrossRefGoogle Scholar
Brown, C. H., 1949. Protein skeletal materials in the invertebrates. Experimental Cell Research, supplement 1, 351355.Google Scholar
Brown, C. H., 1952. Some structural proteins of Mytilus edulis. Quarterly Journal of Microscopical Science, 93, 487502.Google Scholar
Coombs, T. L. & Keller, P. J., 1981. Mytilus byssal threads as an environmental marker for metals. Aquatic Toxicology, 1, 291300.CrossRefGoogle Scholar
Eisenthal, R. & Cornish-Bowden, A., 1974. The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameters. Biochemical Journal, 139, 715720.CrossRefGoogle ScholarPubMed
Gathercole, L. J. & Keller, A., 1974. Light microscopic waveforms in collagenous tissues and their structural implications. In Structure of Fibrous Biopolymers (ed. Atkins, E. D. T. and Keller, A.), pp. 153187. London: Butterworths.Google Scholar
Gerzeli, G., 1961. Ricerche istomorfologiche e istochimiche sulla formazione del bisso in Mytilus galloprovincialis. Pubblicazioni della Stazione zoologica di Napoli, 32, 88—103.Google Scholar
Hartree, E. F., 1972. The determination of protein. Analytical Biochemistry, 48, 422428.CrossRefGoogle ScholarPubMed
Hochachka, P. W. & Somero, G. N., 1973. Strategies of Biochemical Adaptation. 358 pp. Philadelphia: Saunders.Google Scholar
King, J. & Laemmli, U. K., 1971. Polypeptides of the tail fibers of bacteriophage T4. Journal of Molecular Biology, 62, 465477.CrossRefGoogle ScholarPubMed
Lipke, H., Sugumaran, M. & Henzel, W., 1983. Mechanisms of sclerotization in dipterans. Advances in Insect Physiology, 17, 184.CrossRefGoogle Scholar
Merkel, J. R., Dreisbach, J. H. & Ziegler, H. B., 1975. Collagenolytic activity of some marine bacteria. Applied Microbiology, 29, 145151.CrossRefGoogle ScholarPubMed
Ohnishi, E., Dohke, K. & Ashida, M., 1970. Activation of prephenoloxidase. Archives of Biochemistry and Biophysics, 139, 143—148.CrossRefGoogle Scholar
Overbeek, J. T. G. & Voorn, M. J., 1957. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. Journal of Cellular and Comparative Physiology, 49, supplement 1, 726.CrossRefGoogle ScholarPubMed
Pankhurst, K. G. A., 1958. Monolayer studies of tanning reactions. In Surface Phenomena in Chemistry and Biology (ed. Danielli, J. F., Pankhurst, K. G. A. and Riddiford, A. C.), pp. 100111. London: Pergamon Press.Google Scholar
Price, H. A., 1982. An analysis of factors determining seasonal variation in byssal attachment strength of Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 62, 147155.CrossRefGoogle Scholar
Price, H. A., 1983. Structure and formation of the byssus complex in Mytilus (Mollusca, Bivalvia). Journal of Molluscan Studies, 49, 917.CrossRefGoogle Scholar
Pujol, J.-P., 1967. Le complexe byssogene de mollusques bivalves. Histochimie comparée des secretations chez Mytilus edulis L. et Pinna nobilis L. Bulletin de la Societe linnéenne de Normandie, 10, 308332.Google Scholar
Ravera, O., 1950. Ricerche sul bisso e sulla sua secrezione. Pubblicazioni della Stazione zoologica di Napoli, 22, 95105.Google Scholar
Ravindranath, M. H. & Ramalingam, K., 1972. Histochemical identification of dopa, dopamine and catechol in the phenol gland and mode of tanning of byssus threads of Mytilus edulis. Acta histochemica, 42, 8794.Google ScholarPubMed
Rudall, K. M., 1955. The distribution of collagen and chitin. Symposia of the Society for Experimental Biology, no. 9, 4971.Google Scholar
Segel, I. H., 1976. Biochemical Calculations, 2nd ed.218 pp. New York: John Wiley.Google Scholar
Smeathers, J. E. & Vincent, J. F. V., 1979. Mechanical properties of mussel byssus threads. Journal of Molluscan Studies, 45 219230.CrossRefGoogle Scholar
Smyth, J. D., 1954. A technique for the histochemical demonstration of polyphenoloxidase and its application to egg shell formation in helminths and byssal formation in Mytilus. Quarterly Journal of Microscopical Science, 95, 139152.Google Scholar
Tamarin, A. & Keller, P. J., 1972. An ultrastructural study of the byssal thread forming system in Mytilus. Journal of Ultrastructure Research, 40, 401416.CrossRefGoogle ScholarPubMed
Van Winkle, W., 1970. Effect of environmental factors on byssal thread formation. Marine Biology, 7, 143148.CrossRefGoogle Scholar
Vitellaro, Zuccarello L., 1981. Ultrastructural and cytochemical study on the enzyme gland of the foot of a mollusc. Tissue and Cell, 13, 701713.Google Scholar
Vincent, J. F. V. & Hillerton, J. E., 1979. The tanning of insect cuticle: a critical review and revised mechanisms. Journal of Insect Physiology, 25, 653658.CrossRefGoogle Scholar
Waite, J. H., 1976. Calculating extinction coefficients for enzymatically produced o-quinones. Analytical Biochemistry, 76, 211218.CrossRefGoogle Scholar
Waite, J. H., 1983 a. Adhesion in byssally attached bivalves. Biological Reviews, 58, 209231.CrossRefGoogle Scholar
Waite, J. H., 1983 b. Quinone-tanned scleroproteins. In The Mollusca, vol. 1 (ed. Hochachka, P. W. and Wilbur, K. M.), pp. 467504. New York: Academic Press.Google Scholar
Waite, J. H., 1983 c. Evidence for a repeating 3, 4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. Journal of Biological Chemistry, 258, 29112915.CrossRefGoogle ScholarPubMed
Waite, J. H. & Tanzer, M. L., 1980. The bioadhesive of Mytilus byssus: a protein containing L-dopa and hydroxyproline. Biochemical and Biophysical Research Communications, 96, 15541561.CrossRefGoogle Scholar
Waite, J. H. & Wilbur, K. M., 1976. Phenoloxidase in the periostracum of the marine bivalve Modiolus demissus Dillwyn. Journal of Experimental Zoology, 195, 359367.CrossRefGoogle Scholar