Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T14:41:00.089Z Has data issue: false hasContentIssue false

Structure of hyperiid amphipod assemblages on Isla Gorgona, eastern tropical Pacific off Colombia

Published online by Cambridge University Press:  06 December 2011

Bellineth Valencia*
Affiliation:
Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Departamento de Biología, Grupo de Investigación en Ciencias Oceanográficas, A.A. 25360, Cali, Colombia
Alan Giraldo
Affiliation:
Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Departamento de Biología, Grupo de Investigación en Ciencias Oceanográficas, A.A. 25360, Cali, Colombia
*
Correspondence should be addressed to: B. Valencia, Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Departamento de Biología, Grupo de Investigación en Ciencias Oceanográficas, A.A. 25360, Cali, Colombia email: [email protected]

Abstract

Temporal variation of hyperiid amphipod structure assemblages was studied on Isla Gorgona, eastern tropical Pacific (ETP) off Colombia between September 2005 and August 2006. Forty-six species were found during the entire sampling period: Hyperioides sibaginis, Lestrigonus bengalensis, Phronimopsis spinifera, Tetrathyrus forcipatus and Paralycaea gracilis dominated the assemblage, representing 92%. The dendogram based on the Bray–Curtis similarity index showed that the hyperiid assemblages were separated into two groups, which did not coincide with the seasonality described for the ETP (wet versus dry season). Rather, groups comprised wet (May to November) and dry season months (December to April). The first group included November, December, February and March. During these months, significantly higher hyperiid richness, diversity and abundance were found, although colder subsurface water temperatures in Gorgona were registered only during February and March. The other group included May to October and January, and was characterized by lower hyperiid diversity and abundance values. Significant correlations were found between hyperiid abundance and the possible gelatinous zooplankton hosts (medusae, siphonophores and salps). This study contributes to increasing knowledge of the zooplankton community in the Panama Bight, as well as of a poorly studied group in the ETP.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amador, J.A., Alfaron, E.J., Lizano, O.G. and Magaña, V.O. (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Progress in Oceanography 69, 101142.Google Scholar
Blanco, J.F. (2009) The hydroclimatology of Gorgona Island: seasonal and ENSO-related patterns. Actualidades Biológicas 31, 111121.CrossRefGoogle Scholar
Bocher, P., Cherel, Y., Labat, J.P., Mayzaud, P., Razouls, S. and Jouventin, P. (2001) Amphipod-based food web: Themisto gaudichaudii caught in nets and by seabirds in Kerguelen waters, southern Indian Ocean. Marine Ecology Progress Series 223, 261276.CrossRefGoogle Scholar
Bowman, T.E. (1973) Pelagic amphipods of the genus Hyperia and closely related genera (Hyperiidea: Hyperiidae). Smithsonian Contributions to Zoology 136, 176.Google Scholar
Bowman, T.E. and Gruner, H.E. (1973) The families and genera of Hyperiidea (Crustacea: Amphipoda). Smithsonian Contributions to Zoology 146, 164.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, UK: Primer-E.Google Scholar
Cornet, C. and Gili, J.M. (1993) Vertical distribution and daily migrations of hyperiid amphipods in the northern Benguela in relation to water column stratification. Deep-Sea Research I 40, 22952306.Google Scholar
Dalpadado, P., Yamaguchi, A., Ellertsen, B. and Johannessen, S. (2008) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep-Sea Research II 55, 22662274.CrossRefGoogle Scholar
D'Croz, L. and O'Dea, A. (2007) Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuarine, Coastal and Shelf Science 73, 116.Google Scholar
Devis-Morales, A., Schneider, W., Montoya-Sánchez, R.A. and Rodríguez-Rubio, E. (2008) Monsoon-like winds reverse oceanic circulation in the Panama Bight. Geophysical Research Letters 35, L20607, doi: 10.1029/2008GL035172 Google Scholar
Díaz, J.M., Pinzón, J.H., Perdomo, A.M., Barrios, L.M. and López-Victoria, M. (2001) Generalidades. In Barrios, L.M. and López-Victoria, M. (eds) Gorgona marina: contribución al conocimiento de una isla única. Santa Marta: INVEMAR, Serie Publicaciones Especiales No. 7, pp. 1726.Google Scholar
Färber-Lorda, J., Lavín, M.F., Zapatero, M.A. and Robles, J.M. (1994) Distribution and abundance of euphausiids in the Gulf of Tehuantepec during wind forcing. Deep-Sea Research 38, 359367.CrossRefGoogle Scholar
Fernández-Álamo, M.A. and Sanvicente-Añorve, L. (2005) Holoplanktonic polychaetes from the Gulf of Tehuantepec, Mexico. Cahiers de Biologie Marine 46, 227239.Google Scholar
Fernández-Álamo, M.A. and Färber-Lorda, J. (2006) Zooplankton and the oceanography of the Eastern Tropical Pacific: a review. Progress in Oceanography 69, 318359.Google Scholar
Fernández-Álamo, M.A., Sanvicente-Añorve, L. and Alameda de la Mora, G. (2000) Copepod assemblages in the Gulf of Tehuantepec, Mexico. Crustaceana 73, 11391153.Google Scholar
Fiedler, P.C. and Talley, L.D. (2006) Hydrography of the eastern tropical Pacific: a review. Progress in Oceanography 69, 143180.Google Scholar
Forsbergh, E.D. (1969) On the climatology, oceanography and fisheries of the Panama Bight. Bulletin of the Inter-American Tropical Tuna Commission 14, 49385.Google Scholar
Gasca, R. (2004) Distribution and abundance of hyperiid amphipods in relation to summer mesoscale features in the southern Gulf of Mexico. Journal of Plankton Research 26, 9931003.Google Scholar
Gasca, R. (2009a) Hyperiid amphipods. In Wehrtmann, I.S. and Cortes, J. (eds) Marine biodiversity of Costa Rica, Central America. Amsterdam, The Netherlands: Springer, pp. 275282.Google Scholar
Gasca, R. (2009b) Hyperiid amphipods (Crustacea: Peracarida) in Mexican waters of the Pacific Ocean. Pacific Science 63, 8395.Google Scholar
Gasca, R. and Franco-Gordo, C. (2008) Hyperiid amphipods (Peracarida) from Banderas Bay, Mexican Tropical Pacific. Crustaceana 81, 563575.CrossRefGoogle Scholar
Gasca, R., Manzanilla, H. and Suárez-Morales, E. (2009) Distribution of hyperiid amphipods (Crustacea) of the southern Gulf of Mexico, summer and winter, 1991. Journal of Plankton Research 31, 14931504.Google Scholar
Gasca, R., Suárez-Morales, E. and Franco-Gordo, C. (2010) New records of hyperiids (Amphipoda, Hyperiidea) from surface waters of the central Mexican Pacific. Crustaceana 83, 927940.Google Scholar
Giraldo, A. (2008) Variabilidad espacial de temperatura, salinidad y transparencia en el ambiente pelágico del PNN Gorgona durante septiembre 2007 y marzo 2008. Boletín Científico CIOH 26, 157163.Google Scholar
Giraldo, A., Valencia, B. and Martínez-Aguilar, T. (2008a) Biomasa zooplanctónica en la Cuenca del Pacífico Colombiano durante dos periodos oceanográficos contrastantes de 2007. XIII Seminario Nacional de Ciencia y Tecnología del Mar 2008. San Andrés, Colombia: INVEMAR—Universidad Jorge Tadeo Lozano, 225 pp.Google Scholar
Giraldo, A., Rodríguez-Rubio, E. and Zapata, F. (2008b) Condiciones oceanográficas en Isla Gorgona, Pacífico Oriental Tropical de Colombia. Latin American Journal of Aquatic Research 36, 121128.Google Scholar
Harbison, G.R., Biggs, D.C. and Madin, P. (1977) The association of Amphipoda Hyperiidea with gelatinous zooplankton—II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep-Sea Research 24, 465488.CrossRefGoogle Scholar
Laval, P. (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanography and Marine Biology: an Annual Review 18, 1156.Google Scholar
Lavaniegos, B.E. and Ohman, M.D. (1999) Hyperiid amphipods as indicators of climate change in the California Current. In Schram, F.R. and von Vaupel Klein, J.C. (eds) Proceedings of the 4th International Crustacean Congress, Crustaceans and the Biodiversity Crisis, Amsterdam, Volume 1. Leiden: Brill, pp. 489509.Google Scholar
Lima, M.C.G. and Valentin, J.L. (2001) New records of Amphipoda Hyperiidea in associations with gelatinous zooplankton. Hydrobiologia 448, 229235.Google Scholar
Madin, L.P. and Harbison, G.R. (1977) The association of Amphipoda Hyperiidea with gelatinous zooplankton—I. Associations with Salpidae. Deep-Sea Research 24, 449463.Google Scholar
Miglietta, M.P., Rossi, M. and Collin, R. (2008) Hydromedusa blooms and upwelling events in the Bay of Panama, Tropical East Pacific. Journal of Plankton Research 30, 783793.CrossRefGoogle Scholar
Pennington, J.T., Mahoney, K.L., Kuwahara, V.S., Kolber, D.D., Calienes, R. and Chavez, F.P. (2006) Primary production in the Eastern Tropical Pacific: a review. Progress in Oceanography 69, 285317.Google Scholar
Répelin, R. (1978) Les amphipodes pélagiques du Pacifique occidental et central. Biologie, écologie et relations trophiques avec la faune ichthyologique. Travaux et Documents de L'ORSTOM 86, 1381.Google Scholar
Rodríguez-Rubio, E. and Stuardo, J. (2002) Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Proceedings of the Indian Academy of Science: Earth and Planetary Science 111, 110.Google Scholar
Rodríguez-Rubio, E., Schneider, W. and Abarca del Río, R. (2003) On the seasonal circulation within the Panama Bight derived from satellite observations of wind, altimetry and sea surface temperature. Geophysical Research Letters 30, 14101413.CrossRefGoogle Scholar
Shih, C.T. (1991) Description of two new species of Phronima Latreille, 1802 (Amphipoda: Hyperiidea) with a key to all species of the genus. Journal of Crustacean Biology 11, 322335.CrossRefGoogle Scholar
Shih, C.T. and Hendrycks, E.D.A. (2003) A new species and new records of the genus Vibilia Milne Edwards, 1830 (Amphipoda: Hyperiidea: Vibiliidae) occurring in the eastern Pacific Ocean. Journal of Natural History 37, 253296.Google Scholar
Shulenberger, E. (1977) Hyperiid amphipods from the zooplankton community of the North Pacific central gyre. Marine Biology 42, 375385.Google Scholar
Soto, P.A., Sánchez, S.L. and Fernández, C.E. (2001) Comunidades planctónicas marinas. In Barrios, L.M. and López-Victoria, M (eds) Gorgona marina: contribución al conocimiento de una isla única. Santa Marta: INVEMAR, Serie Publicaciones Especiales No. 7, pp. 93105.Google Scholar
UAESPNN (Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales) (1998) El sistema de parques nacionales naturales de Colombia. Nomos, Bogotá, Colombia: Ministerio del Medio Ambiente, 497 pp.Google Scholar
Valencia, B. and Giraldo, A. (2009) Hipéridos (Crustacea: Amphipoda: Hyperiidea) en el sector norte del Pacífico oriental tropical Colombiano. Latin American Journal of Aquatic Research 37, 265273.CrossRefGoogle Scholar
Vinogradov, G. (1999) Amphipoda. In Boltovskoy, D. (ed.) South Atlantic zooplankton. Leiden, The Netherlands: Backhuys Publishers, pp. 11411240.Google Scholar
Vinogradov, M.E., Volkov, A. and Semenova, T.N. (1996) Hyperiid amphipods (Amphipoda, Hyperiidea) of the world oceans. Lebanon, NH: Science Publishers, Inc.Google Scholar
Yamada, Y. and Ikeda, T. (2006) Production, metabolism and trophic importance of four pelagic amphipods in the Oyashio region, western subarctic Pacific. Marine Ecology Progress Series 308, 155163.Google Scholar
Zeidler, W. (2004) A review of the families and genera of the hyperiidean amphipod superfamily Phronimoidea Bowman & Gruner, 1973 (Crustacea: Amphipoda: Hyperiidea). Zootaxa 567, 166.Google Scholar
Zeidler, W. (2009) A review of the hyperiidean amphipod superfamily Lanceoloidea Bowman & Gruner, 1973 (Crustacea: Amphipoda: Hyperiidea). Zootaxa 2000, 1117.Google Scholar
Supplementary material: Image

Valencia Supplementary Image 1

Fig. 4. Relative abundance of the five most abundant species of hyperiids between September 2005 and August 2006 on Isla Gorgona. hyperiid amphipods from tropical pacific off colombia 5

Download Valencia Supplementary Image 1(Image)
Image 657 KB
Supplementary material: Image

Valencia Supplementary Image 2

Fig. 7. Dendogram (A) and non-metric multidimensional scaling (B) analysis of hyperiid abundance using Bray–Curtis similarity index. Also based on similarity percentage analysis, the relative contribution and geometric mean (C) of the five most abundant species for each cluster are shown

Download Valencia Supplementary Image 2(Image)
Image 748.9 KB