Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T19:42:22.581Z Has data issue: false hasContentIssue false

Spatial patterns of species richness and taxonomic composition of polychaetes along the Baja California Peninsula, Eastern Pacific

Published online by Cambridge University Press:  10 August 2017

Pablo Hernández-Alcántara
Affiliation:
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Ciudad de México, 04510, México
Diana Melissa Cuéllar-Mercado
Affiliation:
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Ciudad de México, 04510, México
Adriana Barbosa-López
Affiliation:
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Ciudad de México, 04510, México
Vivianne Solís-Weiss*
Affiliation:
Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes s/n Puerto Morelos Quintana Roo, 77580, México
*
Correspondence should be addressed to: V. Solís-Weiss, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes s/n Puerto Morelos Quintana Roo, 77580, México email: [email protected]

Abstract

Spatial variations of polychaetes along the Baja California Peninsula continental shelf were analysed in two ways: (1) by evaluating the species richness and defining the faunal assemblages from local sampling, and (2) by characterizing the latitudinal variation of beta-diversity based on the distribution of all polychaetes reported up to now. Twenty-seven stations from three oceanographic expeditions were sampled, and 2858 individuals from 38 families and 231 species were identified. Polychaetes were abundant (mean = 37.5 ind 0.1 m−2) and diversified (mean = 15 species station−1). Differences in species composition defined seven faunal assemblages, but their number of species did not show significant latitudinal changes. The beta-diversity analysis was based on distribution data of 730 species from 47 families. The presence of a group of islands in the middle Gulf could have a negative effect on the species distribution, since the lowest values of β T-diversity (0.39) were found in the northern Gulf, but their species were different from those recorded in the central region. The wide variation in β T-diversity (0.5–0.87) showed latitudinal changes in the species composition, mainly in the Gulf mouth (0.86–0.87), which indicated that the fauna inside the Gulf was different from that inhabiting the Pacific coasts. The ICE and Chao2 estimators showed that the polychaetes in the study area are relatively well known (>80%), and that most species (415) have small distribution ranges. The effects of these infrequent species were similar at each latitudinal band, which suggested that the observed β T-diversity pattern could represent a suitable estimation.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badan-Dangon, A., Dorman, E., Merrifield, A. and Winant, D. (1991) The lower atmosphere over the Gulf of California. Journal of Geophysical Research 96, 1687716896.Google Scholar
Banse, K. (1977) Gymnonereidinae new subfamily: the Nereididae (Polychaeta) with bifid parapodial neurocirri. Journal of Natural History 11, 609628.Google Scholar
Brehm, G., Homeier, J. and Fiedler, K. (2003) Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions 9, 351366.Google Scholar
Brusca, R.C. (1980) Common intertidal invertebrates of the Gulf of California. 2nd edition. Tucson, AZ: University of Arizona Press.Google Scholar
Brusca, R.C. (2010) Introduction. In Brusca, R.C. (ed.) The Gulf of California: biodiversity and conservation. Tucson, AZ: University of Arizona Press, pp. 16.Google Scholar
Brusca, R.C. and Findley, L.T. (2005) The sea of cortez. In Hendrickx, M.E., Brusca, R.C. and Findley, L.T. (eds) A distributional checklist of the macrofauna of the Gulf of California, Mexico. Part 1. Invertebrates. Tucson, AZ: Arizona-Sonora Desert Museum, pp. 1124.Google Scholar
Caley, M.J. and Schluter, D. (1997) The relationship between local and regional diversity. Ecology 78, 7080.Google Scholar
Carr, C.M. (2012) Polychaete diversity and distribution patterns in Canadian marine waters. Marine Biodiversity 42, 93107.CrossRefGoogle Scholar
Castelli, A., Bianchi, C.N., Cantone, G., Çinar, M.E., Gambi, M.C., Giangrande, A., Sareri, D.I., Lanera, P., Licciano, M., Musco, L., Sanfilippo, R. and Simonini, R. (2008) Annelida Polychaeta. Biologia Marina Mediterranea 15(Suppl.), 323373.Google Scholar
Chamberlin, R.V. (1919) The Annelida Polychaeta. Memoirs of the Museum of Comparative Zoology, Harvard 48, 1514.Google Scholar
Chazdon, R., Colwell, R.K., Denslow, J.S. and Guariguata, M.R. (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forest of northeastern Costa Rica. In Dallmeir, F. and Comiskey, J.A. (eds) Forest biodiversity research, monitoring and modelling. Paris: UNESCO & The Parthenon Publishing Group, pp. 285309.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2015) PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Clarke, K.R., Gorley, R.N., Somerfield, P.J. and Warwick, R.M. (2014) Change in marine communities: an approach to statistical analysis and interpretation. 3rd edition. Plymouth: PRIMER-E.Google Scholar
Colwell, R.K. (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Persistent URL purl.oclc.org/estimates.Google Scholar
Colwell, R.K. and Coddington, J.A. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions: Biological Sciences 345, 101118.Google Scholar
Colwell, R.K., Rahbek, C. and Gotelli, N.J. (2004) The mid-domain effect and species richness patterns: what have we learned so far? American Naturalist 163, E1E23.Google Scholar
Currie, D.J. and Kerr, J.T. (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecological Monographs 78, 318.Google Scholar
Dauvin, J.C., Bachelet, G. and Bellan, G. (2006) Biodiversity and biogeographic relationships of the polychaete fauna in French Atlantic and Mediterranean waters. Scientia Marina 70S3, 259267.Google Scholar
Day, J.H. (1963) The polychaete fauna of South Africa. Part 8. New species and records from grab samples and dredgings. Bulletin of the British Museum (Natural History), Zoology 10, 383445.Google Scholar
De Léon-González, J.A. (1994) Soft bottom polychaetes from the western coast of Baja California Sur, Mexico. 4. Onuphidae. Cahiers de Biologie Marine 35, 5767.Google Scholar
de Quatrefages, A. (1866) Histoire naturelle des Annelés marins et d'eau douce. Annélides et Géphyriens. Volume 2. Première partie. 1–336. Deuxième Partie. 337–794. Paris: Librarie Encyclopédique de Roret.Google Scholar
Diaz, R.J. and Rosenberg, R. (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology Annual Review 33, 245303.Google Scholar
Díaz-Uribe, J.G., Arreguín-Sánchez, F. and Cisneros-Mata, M.A. (2007) Multispecies perspective for small-scale fisheries management: a trophic analysis of La Paz Bay in the Gulf of California Mexico. Ecological Modelling 201, 205222.Google Scholar
Duran-Campos, E., Salas-de León, D.A., Monreal-Gómez, M.A., Aldeco-Ramírez, J. and Coria-Monter, E. (2015) Differential zooplankton aggregation due to relative vorticity in a semi-enclosed bay. Estuarine, Coastal and Shelf Science 164, 1018.Google Scholar
Ehlers, E. (1901) Die Polychaeten des magellanischen und chilenischen Strandes. Ein faunistischer Versoch. Festschrift zur Feir des hundertfünfzigjährigen Bestehens der königlichen Gesellschaft der Wissenschaften zu Göttingen. Berlin: Weidmannsche Buchhandlung.Google Scholar
Ekman, S. (1953) Zoogeography of the sea. London: Sidwick & Jackson.Google Scholar
Garth, J.S. (1960) Distribution and affinities of the brachyuran Crustacea. Systematic Zoology 9, 105123.CrossRefGoogle Scholar
Gotelly, N. and Colwell, R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379391.Google Scholar
Gravier, M.C. (1901) Sur une singulière forme héteronéréidienne du Golfe de Californie. Bulletin du Muséum National d'Histoire Naturelle, ser. 1 7, 177182.Google Scholar
Gray, J.S. (1997) Marine biodiversity: patterns, threats and conservation needs. Biodiversity and Conservation 6, 153175.Google Scholar
Gray, J.S. (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology 150, 2349.Google Scholar
Gray, J.S. (2001) Marine diversity: the paradigms in patterns of species richness examined. Scientia Marina 65, 4156.Google Scholar
Gray, J.S. (2002) Species richness of marine soft sediments. Marine Ecology Progress Series 244, 285297.CrossRefGoogle Scholar
Guerra-Castro, E. (2012) Diversidad de especies, patrones y procesos estructurales de las comunidades incrustantes asociadas a las raíces de mangle rojo Rhizophora mangle L . PhD thesis. Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Avanzados, Altos de Pipe, Venezuela.Google Scholar
Halffter, G. and Moreno, C.E. (2005) Significado biológico de las diversfidades alfa, beta y gama. In Halffter, G., Soberón, J., Koleff, P. and Melic, A. (eds) Sobre diversidad biológica: el significado de las diversidades. m3 m-Monografías 3ercer Milenio, Volume 4. Zaragoza: SEA, CONABIO, GRUPO DIVERSITAS, CONACyT, pp. 518.Google Scholar
Hartman, O. (1944) Polychaetous Annelids. Part V. Eunicea. Allan Hancock Pacific Expeditions 10, 1237.Google Scholar
Hartman, O. (1947) Polychaetous annelids. Part VII. Capitellidae. Allan Hancock Pacific Expeditions 10, 391481.Google Scholar
Hartman, O. (1957) Orbiniidae, Apistobranchidae, Paraonidae and Longosomidae. Allan Hancock Pacific Expeditions 15, 211393.Google Scholar
Hartman, O. (1960) Systematic account of some marine invertebrate animals from the Deep basin of Southern California. Allan Hancock Pacific Expeditions 22, 69215.Google Scholar
Hartman, O. (1969) Atlas of the sedentariate polychaetous annelids from California. Los Angeles, CA: Allan Hancock Foundation, University of Southern California.Google Scholar
Hendrickx, M.E. (1992) Distribution and zoogeogeographic affinities of decapod crustaceans of the Gulf of California, México. Proceedings of the San Diego Society of Natural History 20, 112.Google Scholar
Hendrickx, M.E. (2001) Occurrence of a continental slope deep-water decapod crustacean community along the edge of the minimum oxygen zone in the southeastern Gulf of California, Mexico. Belgian Journal of Zoology 131, 7186.Google Scholar
Hendrickx, M.E., Brusca, R.C., Cordero, M. and Ramírez, G. (2007) Marine and brackish-water molluscan biodiversity in the Gulf of California, Mexico. Scientia Marina 71, 637647.Google Scholar
Hendrickx, M.E., Brusca, R.C. and Ramírez-Reséndiz, G. (2002) Biodiversity of macrocrustaceans in the Gulf of California, Mexico. In Hendrickx, M.E. (ed.) Contributions to the Study of East Pacific Crustaceans. México: Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, pp. 349368.Google Scholar
Hendrickx, M.E. and Salgado-Barragán, J. (1991) Los estomatópodos (Crustacea: Hoplocarida) del Pacífico mexicano. Publicaciones Especiales Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México 10, 1200.Google Scholar
Hendrickx, M.E. and Serrano, D. (2014) Effects of the oxygen minimum zone on squat lobster distributions in the Gulf of California, Mexico. Central European Journal of Biology 9, 92103.Google Scholar
Hernández-Alcántara, P. (2002) Composición y estructura de las comunidades de poliquetos (Annelida: Polychaeta) bénticos de la plataforma continental del Golfo de California . PhD thesis. Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F.Google Scholar
Hernández-Alcántara, P., González-Ortiz, L. and Solís-Weiss, V. (1994) Los espiónidos (Polychaeta: Spionidae) del Golfo de California y Golfo de Tehuantepec, México. Revista de Biología Tropical 42, 567577.Google Scholar
Hernández-Alcántara, P., Pérez-Mendoza, A.Y. and Solís-Weiss, V. (2006) Description of three new species of Ninoe and Cenogenus (Polychaeta: Lumbrineridae) from the Mexican Pacific. Scientia Marina 70S3(Suppl. 3), 8190.Google Scholar
Hernández-Alcántara, P., Salas-de León, D.A., Solís-Weiss, V. and Monreal-Gómez, M.A. (2013) Geographical patterns in species richness of the benthic polychaetes in the continental shelf of the Gulf of California, Mexican Pacific. Helgoland Marine Research 67, 579589.Google Scholar
Hernández-Alcántara, P., Salas-de León, D.A., Solís-Weiss, V. and Monreal-Gómez, M.A. (2014) Bathymetric patterns of polychaete (Annelida) species richness in the continental shelf of the Gulf of California, Eastern Pacific. Journal of Sea Research 91, 7987.Google Scholar
Hernández-Alcántara, P. and Solís-Weiss, V. (1999) Systematics and distribution of the polychaetes (Annelida: Polychaeta) from the sublittoral zone in the Gulf of California. Oceánides 13, 2538.Google Scholar
Hernández-Alcántara, P. and Solís-Weiss, V. (2005) Seasonal variations of the Spionida (Palpata: Canalipalpata) in the sublittoral zone of the Gulf of California. Marine Ecology 26, 273285.Google Scholar
Hurlbert, S.H. (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577586.Google Scholar
Johnson, H.P. (1901) The Polychaeta of the Puget Sound region. Proceedings of the Boston Society for Natural History 29, 381437.Google Scholar
Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72, 367382.Google Scholar
Lamont, P.A. and Gage, J.D. (2000) Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep-Sea Research II 47, 924.Google Scholar
Lavín, M.F., Beier, E. and Badan, A. (1997) Estructura hidrográfica y circulación del Golfo de California: Escalas estacional e interanual. In Lavín, M.F. (ed.) Contribuciones a la oceanografía física en México. México: Monografía, no. 3, Unión Geofísica Mexicana, pp. 141171.Google Scholar
Lavín, M.F. and Marinone, S.G. (2003) An overview of the physical oceanography of the Gulf of California. In Velasco Fuentes, O.U., Sheimbaum, J. and Ochoa, J.J. (eds) Nonlinear processes in geophysical fluid dynamics. Dordrecht: Kluwer Academic Publishers, pp. 173204.Google Scholar
Lee, S. and Chao, A. (1994) Estimating populations size via sample coverage for capture-recapture models. Biometrics 50, 8897.Google Scholar
Legendre, P., Borcard, D. and Peres-Neto, P.R. (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75, 435450.Google Scholar
Levin, L.A., Gage, J.D., Martin, C. and Lamont, P.A. (2000) Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Research 47, 189226.Google Scholar
Lluch-Cota, S.E., Aragón-Noriega, E.A., Arreguín-Sánchez, F., Aurioles-Gamboa, D., Bautista-Romero, J.J., Brusca, R.C., Cervantes-Duarte, R., Cortés-Altamirano, R., Del-Monte-Luna, P., Esquivel-Herrera, A., Fernández, G., Hendrickx, M.E., Hernández-Vázquez, S., Herrera-Cervantes, H., Kahru, M., Lavín, M., Lluch-Belda, D., Lluch-Cota, D.B., López-Martínez, J., Marinone, S.G., Nevárez-Martínez, M.O., Ortega-García, S., Palacios-Castro, E., Parés-Sierra, A., Ponce-Díaz, G., Ramírez-Rodríguez, M., Salinas-Zavala, C.A., Schwartzlose, R.A. and Sierra-Beltrán, A.P. et al. (2007) The Gulf of California: review of ecosystem status and sustainability changes. Progress in Oceanography 73, 126.Google Scholar
Maciolek, N.J. and Holland, J.S. (1978) Scoloplos texana: a new orbiniid polychaete from south Texas, with notes on the related species Scoloplos treadwelli Eisig. Contributions in Marine Science 21, 163169.Google Scholar
Mackie, A.S.Y. and Oliver, P.G. (1996) Marine macrofauna: polychaetes, molluscs and crustaceans. In Hall, G.S. (ed.) Methods for the examination of organismal diversity in soils and sediments. New York, NY: CAB International, pp. 263284.Google Scholar
McIntosh, W.C. (1885) Report on the Annelida Polychaeta collected by H.M.S. Challenger during the years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1872–76. Series Zoology 12, 1554.Google Scholar
Molina-Cruz, A., Pérez-Cruz, L. and Monreal-Gómez, M.A. (2002) Laminated sediments in the Bay of La Paz, Gulf of California: a depositional cycle regulated by pluvial flux. Sedimentology 49, 14011410.Google Scholar
Monro, C.C.A. (1933) The Polychaeta Errantia collected by Dr. C. Crossland at Colón, in the Panama region, and the Galapagos Islands during the Expedition of the S.Y. ‘St. George’. Proceedings of the Zoological Society of London 103, 196.Google Scholar
Paden, C.A., Abbott, M.R. and Winant, C.D. (1991) Tidal and atmospheric forcing of the upper ocean in the Gulf of California. Part I: sea surface temperature variability. Journal of Geophysical Research 96, 1833718359.Google Scholar
Parés-Sierra, A., López, M. and Pavía, E.G. (1997) Oceanografía Física del Océano Pacífico Nororiental. In Lavín, M.F. (ed.) Contribuciones a la oceanografía física en México. México: Unión Geofísica Mexicana, pp. 124. [Monografía, no. 3.]Google Scholar
Parker, R.H. (1964) Zoogeography and ecology of some macro-invertebrates particularly mollusks, in the Gulf of California and the Continental slope off Mexico. Videnskabelige Meddelelser fra Dansk Naturhistorik Forening 126, 1178.Google Scholar
Pérez-Torrijos, J., Hernández-Alcántara, P. and Solís-Weiss, V. (2009) Nephtyidae (Polychaeta) from the Gulf of California (Mexican Pacific) with the description of two new species of Aglaophamus . Journal of the Marine Biological Association of the United Kingdom 89, 697710.CrossRefGoogle Scholar
Read, G. and Fauchald, K. (eds) (2016) World Polychaeta database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=129432 on 2016–08–24.Google Scholar
Reish, D.J. (1968) A biological survey of Bahia de Los Angeles, Gulf of California, Mexico. II. Benthic polychaetous annelids. Transactions of the San Diego Society of Natural History 15, 67106.Google Scholar
Reuscher, M.G. and Shirley, T.C. (2014) Diversity, distribution, and zoogeography of benthic polychaetes in the Gulf of Mexico. Marine Biodiversity 44, 519532.Google Scholar
Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., Vynne, C. and Werner, T.B. (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 12801284.Google Scholar
Salas-de León, D.A., Carbajal-Pérez, N., Monreal-Gómez, M.A. and Gil-Zurita, A. (2011) Vorticity and mixing induced by the barotropic M2 tidal current and zooplankton distribution in the Gulf of California. Journal of Sea Research 66, 143153.Google Scholar
Sanders, H.L. (1968) Marine benthic diversity: a comparative study. American Naturalist 102, 243282.Google Scholar
Soberón, J.S., Jiménez, R., Golubov, J. and Koleff, P. (2007) Assessing completeness of biodiversity database at different spatial scales. Ecography 30, 152160.Google Scholar
Strickland, J.D.H. and Parsons, T.R. (1977) A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167, 1310.Google Scholar
Thomson, D.A. and Gilligan, M.R. (2000) The rocky-shore fishes of the Gulf of California. In Thomson, D.A., Findley, L.T. and Kerstitch, A. (eds) Reef fishes of the Sea of Cortez. Austin, TX: The University of Texas Press, pp. 154–77.Google Scholar
Walther, B.A. and Moore, J. (2005) The concepts of bias, precision and accurancy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815829.Google Scholar
Wilson, M.V. and Schmida, A. (1984) Measuring beta diversity with presence absence data. Journal of Animal Ecology 72, 10551064.Google Scholar
Zamorano, P. and Hendrickx, M.E. (2011) State of knowledge about the community of mollusks on both sides of the Baja California peninsula, Mexico: a comparative analysis. Cahiers de Biologie Marine 52, 1322.Google Scholar