Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T17:57:42.292Z Has data issue: false hasContentIssue false

Reproductive biology of the seastar Ceramaster grenadensis from the deep north-western Mediterranean Sea

Published online by Cambridge University Press:  24 February 2015

A. Mecho*
Affiliation:
Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
U. Fernandez-Arcaya
Affiliation:
Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
E. Ramirez-Llodra
Affiliation:
Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
J. Aguzzi
Affiliation:
Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
J.B. Company
Affiliation:
Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
*
Correspondence should be addressed to:A. Mecho, Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain email: [email protected]

Abstract

Ceramaster grenadensis is one of the most abundant bathyal seastars in the north-western Mediterranean Sea and also presents a wide geographic distribution in the Atlantic Ocean. As with other species in this genus, little information is available on the biology and reproductive strategy of C. grenadensis. In this context, we describe for the first time the reproductive cycle of this species from bathyal depths in the north-western Mediterranean Sea. Specimens (N = 141) were collected seasonally from 194 benthic trawls (141 Otter Trawls and 53 Agassiz trawls) conducted during 10 cruises from October 2008 to April 2013. Open slope and canyon systems were sampled at depths between 900 and 2250 m. The population distribution of C. grenadensis showed a depth-related structure, with the smaller adult specimens and juveniles present at greater depths. Sex ratio was 2:1 females per male, constant among seasons and depths. Histological analyses of the gonads showed an asynchronous ovarian organization, with previtellogenic and vitellogenic oocytes throughout the year. These oogenesis patterns suggest a continuous reproduction. However, the Pyloric Caeca Index (PCI) decreased in summer while the Gonad Index (GI) increased in autumn in males, suggesting a higher spawning capacity in autumn. In both sexes, an increasing GI and PCI trend was observed with increasing depth.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvá, V. (1987) Equinodermos batiales de la cubeta catalano-balear (Mediterráneo noroccidental). Miscelània Zoològica 11, 211219.Google Scholar
Anderson, R.C. and Shimek, R.L. (1993) A note on the feeding habits of some uncommon sea stars. Zoo Biology 12, 499503.Google Scholar
Baillon, S., Hamel, J.F. and Mercier, A. (2011) Comparative study of reproductive synchrony at various scales in deep-sea echinoderms. Deep Sea Research I 58, 260272.Google Scholar
Benútez-Villalobos, F. and Dúaz-Martúnez, J.P. (2010) Reproductive patterns of the abyssal asteroid Styracaster elongatus from the N.E. Atlantic Ocean. Deep Sea Research I 57, 157161.Google Scholar
Billett, D.S.M. (1991) Deep-sea holothurians. Oceanography and Marine Biology: an Annual Review 29, 259317.Google Scholar
Carlier, A., Le Guilloux, E., Olu, K., Sarrazin, J., Mastrototaro, F., Taviani, M. and Clavier, J. (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Marine Ecology Progress Series 397, 125137.Google Scholar
Cartes, J.E., Maynou, F., Fanelli, E., Papiol, V. and Lloris, D. (2009) Long-term changes in the composition and diversity of deep-slope megabenthos and trophic webs off Catalonia (western Mediterranean): are trends related to climatic oscillations? Progress in Oceanography 82, 3246.Google Scholar
Clark, A.M. and Downey, M.E. (1992) Starfishes of the Atlantic. 1st edition. London: Chapman & Hall.Google Scholar
Company, J.B., Maiorano, P., Tselepides, A., Plaity, W., Politou, C.Y., Sardá, F. and Rotllant, G. (2004) Deep-sea decapod crustaceans in the western and central Mediterranean Sea: preliminary aspects of species distribution, biomass and population structure. Scientia Marina 68, 7386.Google Scholar
Company, J.B., Sardá, F., Puig, P., Cartes, J.E. and Palanques, A. (2003) Duration and timing of reproduction in decapod crustaceans of the NW Mediterranean continental margin: is there a general pattern? Marine Ecology Progress Series 261, 201216.Google Scholar
Danovaro, R., Company, J.B., Corinaldesi, C., D'onghia, G., Galil, B., Gambi, C., Gooday, A.J., Lampadariou, N., Luna, G.M., Morigi, C., Olu, K., Polymenakou, P., Ramirez-Llodra, E., Sabbatini, A., Sardá, F., Sibuet, M. and Tselepides, A. (2010) Deep-sea biodiversity in the Mediterranean sea: the known, the unknown, and the unknowable. PLoS ONE 5, e11832.Google Scholar
Eckelbarger, K. and Watling, L. (1995) Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebrate Biology 114, 256269.Google Scholar
Fernandez-Arcaya, U., Ramirez-Llodra, E., Rotllant, G., Recasens, L., Murua, H., Quaggio-Grassiotto, I. and Company, J.B. (2013a) Reproductive biology of two macrourid fish, Nezumia aequalis and Coelorinchus mediterraneus, inhabiting the NW Mediterranean continental margin. Deep Sea Research II 92, 6372.Google Scholar
Fernandez-Arcaya, U., Recasens, L., Murua, H., Ramirez-Llodra, E., Rotllant, G. and Company, J.B. (2012) Population structure and reproductive patterns of the NW Mediterranean deep-sea macrourid Trachyrincus scabrus (Rafinesque, 1810). Marine Biology 159, 18851896.CrossRefGoogle Scholar
Fernandez-Arcaya, U., Rotllant, G., Ramirez-Llodra, E., Recasens, L., Aguzzi, J., Flexas, M.M., Sanchez-Vidal, A., López-Fernández, P., García, J.A. and Company, J.B. (2013b) Reproductive biology and recruitment of the deep-sea fish community from the NW Mediterranean continental margin. Progress in Oceanography 118, 222234.Google Scholar
Ferrand, J.G., Vadon, C., Doumenc, D. and Guile, A. (1988) The effect of depth on the reproductive cycle of Brissopsis lyrifera (Echinoidea, Echinodermata) in the Gulf of Lions, Mediterranean Sea. Marine Biology 99, 387392.Google Scholar
Gage, J.D., Pearson, M., Clark, A.M., Paterson, G.L.J. and Tyler, P.A. (1983) Echinoderms of the Rockall Trough and adjacent areas I. Crinoidea, Asteroidea and Ophiuroidea. Bulletin of the British Museum (Natural History) Zoology 45, 263308.Google Scholar
Gage, J.D., Tyler, P.A. and Nichols, D. (1986) Reproduction and growth of Echinus acutus var. norvegicus Düben & Koren and E. elegans Düben & Koren on the continental slope off Scotland. Journal of Experimental Marine Biology and Ecology 101, 6183.Google Scholar
Gale, K.S.P., Hamel, J.F. and Mercier, A. (2013) Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada. Deep Sea Research I 80, 2536.Google Scholar
Galley, E.A., Tyler, P.A., Smith, C.R. and Clarke, A. (2008) Reproductive biology of two species of holothurian from the deep-sea order Elasipoda, on the Antarctic continental shelf. Deep Sea Research II 55, 25152526.Google Scholar
Ginger, M.L., Billett, D.S.M., Mackenzie, K.L., Neto, R.R., Boardman, K.D., Santos, V.L.C.S., Horsfall, I.M. and Wolff, G.A. (2001) Organic matter assimilation and selective feeding by holothurians in the deep sea: some observations and comments. Progress in Oceanography 50, 407421.Google Scholar
Harvey, R., Gage, J.D., Billett, D.S.M., Clark, A.M. and Paterson, G.L.J. (1988) Echinoderms of the Rockall Trough and adjacent areas 3. Additional Records. Bulletin of the British Museum 54, 153198.Google Scholar
Howell, K.L., Billett, D.S.M. and Tyler, P.A. (2002) Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep Sea Research I 49, 19011920.CrossRefGoogle Scholar
Koukouras, A., Sinis, A.I., Bobori, D., Kazantzidis, S. and Kitsos, M.S. (2007) The echinoderm (Deuterostomia) fauna of the Aegean Sea, and comparison with those of the neighbouring seas. Journal of Biological Research 7, 6792.Google Scholar
Mcclintock, J.B., Watts, S.A., Marion, K.R. and Hopkins, T.S. (1995) Gonadal cycle, gametogenesis and energy allocation in two sympatric mid shelf sea stars with contrasting modes of reproduction. Bulletin of Marine Science 57, 442452.Google Scholar
Mecho, A., Billett, D.S.M., Ramirez-Llodra, E., Aguzzi, J., Tyler, P.A. and Company, J.B. (2014) First records, rediscovery and compilation of deep-sea echinoderms in the middle and lower continental slope in the Mediterranean Sea. Scientia Marina 78, 281302.Google Scholar
Mercier, A. and Hamel, J.F. (2008) Depth-related shift in life history strategies of a brooding and broadcasting deep-sea asteroid. Marine Biology 156, 205223.Google Scholar
Moranta, J., Stefanescu, C., Massutú, E., Morales, B. and Lloris, D. (1998) Fish community structure and depth-related trends on the continental slope of the Balearic Islands (Algerian basin, western Mediterranean). Marine Ecology Progress 171, 247259.Google Scholar
Quetglas, A., Carbonell, A. and Sanchez, P. (2000) Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (North-Western Mediterranean). Biological aspects of some deep-sea species. Estuarine, Coastal and Shelf Science 50, 739749.Google Scholar
Ramirez-Llodra, E. (2002) Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43, 87170.Google Scholar
Ramirez-Llodra, E., Tyler, P.A. and Billett, D.S.M. (2002) Reproductive biology of porcellanasterid asteroids from three abyssal sites in the northeast Atlantic with contrasting food input. Marine Biology 140, 773788.Google Scholar
Rex, M.A., Etter, R.J., Morris, J.S., Crouse, J., McClain, C.R., Johnson, N.A., Stuart, C.T., Deming, J.W., Thies, R. and Avery, R. (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series 317, 18.Google Scholar
Ross, D., Hamel, J.F. and Mercier, A. (2013) Bathymetric and interspecific variability in maternal reproductive investment and diet of eurybathic echinoderms. Deep Sea Research II 94, 333342.Google Scholar
Sanchez-Vidal, A., Pasqual, C., Kerhervõ, P., Calafat, A., Heussner, S., Palanques, A., Durrieu de Madron, X., Canals, M. and Puig, P. (2008) Impact of dense shelf water cascading on the transfer of organic matter to the deep western Mediterranean basin. Geophysical Research Letters 35, 15.Google Scholar
Sardá, F., Cartes, J.E., Company, J.B. and Albiol, A. (1998) A modified commercial trawl used to sample deep-sea megabentos. Fish Science 64, 492493.Google Scholar
Sardá, F., Company, J.B. and Maynou, F. (2003) Deep-sea shrimp Aristeus antennatus Risso 1816 in the Catalan Sea, a review and perspectives. Journal of Northwest Atlantic Fishery Science 31, 127136.Google Scholar
Shilling, F.M. and Manahan, D.T. (1994) Energy metabolism and amino acid transport during early development of Antarctic and temperate echinoderms. Biological Bulletin 187, 398407.Google Scholar
Stefanescu, C., Lloris, D. and Rucabado, J. (1993) Deep-sea fish assemblages in the Catalan Sea (western Mediterranean) below a depth of 1000 m. Deep Sea Research I 40, 695707.Google Scholar
Sumida, P.Y.G., Tyler, P.A. and Billett, D.S.M. (2001) Early juvenile development of deep-sea asteroids of the NE Atlantic Ocean, with notes on juvenile bathymetric distributions. Acta Zoologica 82, 1140.Google Scholar
Tecchio, S., Ramirez-Llodra, E., Aguzzi, J., Sanchez-Vidal, A., Flexas, M.M., Sardá, F. and Company, J.B. (2013) Seasonal fluctuations of deep megabenthos: finding evidence of standing stock accumulation in a flux-rich continental slope. Progress in Oceanography 118, 188198.Google Scholar
Tecchio, S., Ramirez-Llodra, E., Sardá, F. and Company, J.B. (2011) Biodiversity of deep-sea demersal megafauna in Western and Central Mediterranean basins. Scientia Marina 75, 341350.Google Scholar
Tyler, P.A. (1983) The reproductive biology of Ypsilothuria talismani (Holothuroidea: Dendrochirota) from the N.E. Atlantic. Journal of the Marine Biological Association of the United Kingdom 63, 609616.Google Scholar
Tyler, P.A. (2003) The peripheral deep seas. In Tyler, P.A. (ed.) Ecosystems of the world. Volume 28. Amsterdam: Elsevier, pp. 261293.Google Scholar
Tyler, P.A., Campos-Creasy, L.S. and Giles, L.A. (1994) Environmental control of quasi-continuous and seasonal reproduction in deep-sea benthic invertebrates. In Young, C.M. and Eckelbarger, K. (eds) Reproduction, larval biology, and recruitment of the deep-sea benthos. New York, NY: Columbia University Press, pp. 158178.Google Scholar
Tyler, P.A., Grant, A., Pain, S.L. and Gage, J.D. (1982a) Is annual reproduction in deep-sea echinoderms a response to variability in their environment? Nature 300, 747750.Google Scholar
Tyler, P.A. and Pain, S.L. (1982a) Observations of gametogenesis in the deep-sea asteroids Paragonaster subtilis and Pseudarchaster parelii (Phanerozonia: Goniasteridae). International Journal of Invertebrate Reproduction 5, 269272.Google Scholar
Tyler, P.A. and Pain, S.L. (1982b) The reproductive biology of Plutonaster bifrons, Dytaster insignis and Psilaster andromeda (Asteroidea: Astropectinidae) from the Rockall Trough. Journal of the Marine Biological Association of the United Kingdom 62, 869877.Google Scholar
Tyler, P.A., Pain, S.L. and Gage, J.D. (1982b) The reproductive biology of the deep-sea asteroid Bathybiaster vexillifer . Journal of the Marine Biological Association of the United Kingdom 62, 5769.Google Scholar
Tyler, P.A., Young, C.M., Billett, D.S.M. and Giles, L.A. (1992) Pairing behaviour, reproduction and diet in the deep-sea holothurian genus Paroriza (Holothurioidea: Synallactidae). Journal of the Marine Biological Association of the United Kingdom 72, 447462.Google Scholar
Wigham, B.D., Hudson, I.R., Billett, D.S.M. and Wolff, G.A. (2003) Is long-term change in the abyssal Northeast Atlantic driven by qualitative changes in export flux? Evidence from selective feeding in deep-sea holothurians. Progress in Oceanography 59, 409441.Google Scholar
Young, C.M. (2003) Reproduction, development and life-history traits. In Tyler, P.A. (ed.) Ecosystems of the deep oceans. Volume 28. Amsterdam: Elsevier Science, pp. 381426.Google Scholar
Zúñiga, D., Flexas, M., Sanchez-Vidal, A., Coenjaerts, J., Calafat, A., Jordá, G., García-Orellana, J., Puigdefábregas, J., Canals, M., Espino, M., Sardá, F. and Company, J.B. (2009) Particle fluxes dynamics in Blanes submarine canyon (Northwestern Mediterranean). Progress in Oceanography 82, 239251.Google Scholar