Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:17:09.841Z Has data issue: false hasContentIssue false

Oceanographic scenario and fish larval distribution off Guinea-Bissau (north-west Africa)

Published online by Cambridge University Press:  17 December 2014

M.P. Jiménez*
Affiliation:
Instituto Español de Oceanografía. C. O. de Cádiz. Puerto Pesquero, Muelle de Levante s/n. 11006 Cádiz, Spain
R.F. Sánchez-Leal
Affiliation:
Instituto Español de Oceanografía. C. O. de Cádiz. Puerto Pesquero, Muelle de Levante s/n. 11006 Cádiz, Spain
C. González
Affiliation:
Instituto Español de Oceanografía. C. O. de Cádiz. Puerto Pesquero, Muelle de Levante s/n. 11006 Cádiz, Spain
E. García-Isarch
Affiliation:
Instituto Español de Oceanografía. C. O. de Cádiz. Puerto Pesquero, Muelle de Levante s/n. 11006 Cádiz, Spain
A. García
Affiliation:
Instituto Español de Oceanografía. C. O. de Málaga. Puerto Pesquero, s/n. 29640 Fuengirola, Spain
*
Correspondence should be addressed to: M.P. Jiménez, Instituto Español de Oceanografía. C. O. de Cádiz. Puerto Pesquero, Muelle de Levante s/n. 11006 Cádiz, Spain email: [email protected]

Abstract

This paper describes the hydrography and the larval fish assemblage of Guinea Bissau waters, and analyses the spatial distribution of the main families in relation to the oceanographic features of the area. Data were obtained during an oceanographic survey, undertaken between October and November 2008. In addition to 98 demersal fishing hauls, a total of 33 stations, located between 20 and 1000 m depth, were sampled for hydrography and ichthyoplankton. Data showed that Guinea-Bissauan surface waters are characterized by a strong thermohaline front that flows parallel to the bathymetry of the area. Warm surface waters (SST > 29°C) occupy the inner shelf, and colder (SST < 26°C), chlorophyll-a-rich waters take over the shelf break. Continental runoff seems responsible for the low salinity of the inner-shelf waters whereas the colder types bear thermohaline features typical of tropical Atlantic waters. These features define a scenario which favours the development of fish early life stages, reflected in the high abundance and diversity of fish larvae recorded. A total of 84 taxa of fish larvae were identified. Only the family Clupeidae accounted for 54.8% of the sampled larvae. Other important families were Carangidae (8.8%), Sparidae (8.4%) and Myctophidae (5.9%).

Type
Review Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, P.A., Mané, S.S. and Sotobberup, K.A. (2002) Structure of demersal fish assemblages based on trawl surveys in the continental shelf and upper slope off Guinea-Bissau. In Chavance, P., Gascuel, M.Bâ.D., Vakily, J.M. and Pauly, D. (eds) Pêcheries maritimes, écosystèmes et sociétés en Afrique de l'Ouest: un demi siècle de changement. Office des publications officielles des communautés Européennes, XXXVI (coll. Rapports de recherche halieutique A.C.P.-U.E., 15), pp. 281298.Google Scholar
Bakun, A. (1996) Patterns in the ocean: ocean processes and marine population dynamics. University of California Sea Grant, San Diego, California, USA, in cooperation with Centro de Investigaciones Biológicas de Noroeste, La Paz, Baja California Sur, México, 323 pp.Google Scholar
Barton, E. D., Arístegui, J., Tett, P., Cantón, M., García-Braun, J., Hernández-León, S., Nykjaer, L., Almeida, C., Almunia, J., Ballesteros, S., Basterretxea, G., Escánez, J., García-Weil, L., Hernández-Guerra, A., Ópez-Laatzen, F., Molina, R., Montero, M. F., Navarro-Pérez, E., Rodríguez, J. M., Van Lenning, K., Vélez, H. and Wild, K. (1998) The transition zone of the Canary Current upwelling region. Progress in Oceanography 41, 455504.Google Scholar
Bécognée, P., Almeida, C., Barrera, A., Hernández-Guerra, A. and Hernández-León, S. (2006) Annual cycle of clupeiform larvae around Gran Canaria Island, Canary Islands. Fisheries Oceanography 15, 293300.Google Scholar
Berrit, G.R. and Rebert, J.P. (1977) Océanographie physique et productivité primaire. In Berrit, G.R. (ed.) Le milieu marin de la Guinée Bissau et ses ressources Vivantes. Paris: Orstom. Ministère de la Coopération, pp. 160.Google Scholar
Boely, T., Chabanne, J., Fréon, P., and Stéquert, B. (1982) Cycle sexuel et migrations de Sardinella aurita sur le plateau continental ouest-africain, des Iles Bissagos á la Mauritanie, Rapport. P.V. Réunion du Conseil International pour l'Exploration de la Mer 180, 350355.Google Scholar
Boely, T. and Fréon, P. (1979) Les ressources pélagiques côtières. In Troadec, J.P. and Garcia, S. (eds) Les resources halieutiques de l'Atlantique Centre-Est. Première Partie: Les Ressources du Golfe de Guinée de l'Angola à la Mauritanie. FAO Document Technique sur les Pêches 186, 1378. Rome: FAO.Google Scholar
Desoutter, M. (1990) Acanthuridae. In Quero, J.C., Hureau, J.C., Karrer, C., Post, A. and Saldanha, L. (eds) Check-list of the fishes of the eastern tropical Atlantic (CLOFETA). Lisbon: JNICT; Paris: SEI and UNESCO, no. 2, pp. 962964.Google Scholar
Domain, F. (1979) Les ressources demersales (poissons). In Troadec, J.P. and Garcia, S. (eds) Les resources halieutiques de l'Atlantique Centre-Est. Première Partie: Les Ressources du Golfe de Guinée de l'Angola à la Mauritanie. FAO Document Technique sur les Pêches 186, 79122. Rome: FAO.Google Scholar
Domain, F. (1982) Répartition de la biomasse global du benthos sur le plateau continental ouest africain de 17°N á 12°N : densités comparées liées aux differents types de fond. Rapports et Procès-verbaux des Réunions/Conseil Permanent International pour l'exploration de la Mer 180, 335336.Google Scholar
Domain, F., Kéita, M. and Morize, E. (1999) Typologie générale des ressources demersales du plateau continental. In Domain, F., Chavance, P. and Diallo, A. (eds) La pêche côtière en Guinée: ressources et exploitation. Conakry: IRD/CNSHB, pp. 5386.Google Scholar
Ettahiri, O., Berraho, A., Vidy, G., Ramdani, M. and Do Chi, T. (2003) Observation on the spawning of Sardina and Sardinella off the south Moroccan Atlantic coast (21–26°N). Fisheries Research 60, 207222.Google Scholar
Fager, E.W. and Longhurst, A.R. (1968) Recurrent group analysis of species assemblages of demersal fish in the Gulf of Guinea. Journal of the Fisheries Research Board of Canada 25, 14051421.Google Scholar
Fahay, M.P. (2007) Early stages of fishes in the western North Atlantic Ocean (Davis Strait, southern Greenland and Flemish Cap to Cape Hatteras). Volume 1: Acipenseriformes through Syngnathiformes. Volume 2: Scorpaeniformes through Tetraodontiformes. Monograph no. 1. Dartmouth: North Atlantic Fisheries Organization.Google Scholar
Heileman, S. (2009) Guinea current LME. In Sherman, K. and Hempel, G. (eds) The UNEP Large Marine Ecosystem Report: a perspective on changing conditions in LMEs of the world's Regional Seas. UNEP Regional Seas. Report and Studies, no. 182. Nairobi: UNEP, pp. 117–130.Google Scholar
Heileman, S. and Tandstad, M. (2009) Canary current LME. In Sherman, K. and Hempel, G. (eds) The UNEP Large Marine Ecosystem Report: a perspective on changing conditions in LMEs of the world's Regional Seas. UNEP Regional Seas. Report and Studies, no. 182. Nairobi: UNEP, pp. 130–142.Google Scholar
Junta de, Andalucía (2008) Fluctuaciones y potencialidad de especies pesqueras de plataforma en la región atlãntica andaluza. Consejería de Agricultura y Pesca, Sevilla (España), pp. 758.Google Scholar
Kawasaki, T. (1991) Long-term variability in the pelagic fish populations. In Kawasaki, T., Tanaka, S., Toba, Y., and Taniguchi, A. (eds) Long-term variability of pelagic fish populations and their environment. New York, NY: Pergamon Press, pp. 4760.Google Scholar
Longhurst, A. (1983) Benthic-pelagic coupling and export of organic carbon from a tropical Atlantic continental shelf- Sierra Leone. Estuarine, Coastal and Shelf Science 17, 161185.Google Scholar
Lopes, P.C. and Afonso, M.H. (1995) Distribution and abundance of ichthyoplankton off Guinea-Bissau coast. Boletim Instituto Portugues de Investigacao Marítima 1, 2336.Google Scholar
May, R.C. (1974) Larval mortality in marine fishes and the critical period concept. In Blaxter, J.H.S. (ed) The early life history of fish. Berlin: Springer-Verlag, pp. 319.CrossRefGoogle Scholar
Moyano, M., Rodríguez, J.M. and Hernández-León, S. (2009) Larval fish abundance and distribution during the late winter bloom off Gran Canaria Island, Canary Islands. Fisheries Oceanography 18, 5161.Google Scholar
Nelson, J.S. (1994) Fishes of the world. 3rd edition. New York, NY: John Wiley & Sons.Google Scholar
Okazaki, Y. and Nakata, H. (2007) Effect of mesoscale hydrographic features on larval fish distribution across the shelf break of East China Sea. Continental Shelf Research 27, 16161628.Google Scholar
Richards, W.J. (ed.) (2006) Early stages of Atlantic fishes, an identification guide for the Western Central Atlantic. Boca Raton, FL: CRC Press.Google Scholar
Rodríguez, J.M., Hernández-León, S. and Barton, E.D. (1999) Mesoscale distribution of fish larvae in relation to an upwelling filament off Northwest Africa. Deep-Sea Research I 46, 19691984.Google Scholar
Schneider, W. (1990) FAO species identification sheets for fishery purposes. Field guide to the commercial marine resources of the Gulf of Guinea. Prepared and published with the support of the FAO Regional Office for Africa. Rome: FAO.Google Scholar
Shackell, N.L. and Frank, K.T. (2000) Larval fish diversity on the Scotian Shelf. Canadian Journal of Fisheries and Aquatic Sciences 57, 17471760.Google Scholar
Sparre, P. and Venema, S.C. (1992) Introduction to tropical fish stock assessment. Part 1. FAO Fisheries Technical Paper 306(1), Rev. 2. 407 pp.Google Scholar
Stramma, L., Brandt, P., Schafstall, J., Schott, F., Fischer, J. and Körtzinger, A. (2008) Oxygen minimum zone in the North Atlantic south and east of the Cape Verde Islands. Journal of Geophysical Research – Oceans 113, C04014.Google Scholar
Stramma, L., Hüttl, S. and Schafstall, J. (2005) Water masses and currents in the upper tropical Northeast Atlantic off Northwest Africa. Journal of Geophysical Research – Oceans 110, C12006.Google Scholar
Stramma, L. and Schott, F. (1999) The mean flow field of the tropical Atlantic Ocean. Deep-Sea Research Part II – Topical Studies in Oceanography 46, 279304.Google Scholar
Tomczak, M. and Godfrey, J.S. (2003) Regional oceanography: an introduction. 2nd edition. Delhi: Daya Publishing House.Google Scholar
Tortonese, E. (1990) Lobotidae. In Quero, J.C., Hureau, J.C., Karrer, C., Post, A. and Saldanha, L. (eds) Check-list of the fishes of the eastern tropical Atlantic (CLOFETA). Lisbon: JNICT; Paris: SEI and UNESCO, no. 2, 780 pp.Google Scholar
Ukwe, C.N., Ibe, C.A., Nwilo, P.C. and Huidobro, P.A. (2006) Contributing to the WSSD targets on oceans and coasts in West and Central Africa: The Guinea Current Large Marine Ecosystem Project. International Journal of Oceans and Oceanography 1, 2144.Google Scholar
Zenk, W., Klein, B. and Schroder, M. (1991) Cape Verde frontal zone. Deep Sea Research 38(Suppl. I), S505S530.Google Scholar