Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T18:57:06.583Z Has data issue: false hasContentIssue false

Observations on the Diet, Feeding Mechanisms, Digestion and Food Reserves of the Entocommensal Rhynchocoelan Malacobdella Grossa1

Published online by Cambridge University Press:  11 May 2009

Ray Gibson
Affiliation:
Department Of Zoology, University Of Leeds
J. B. Jennings
Affiliation:
Department Of Zoology, University Of Leeds

Extract

The diet and feeding mechanisms, digestive processes and nature and distribution of the food reserves of the entocommensal rhynchocoelan Malacobdella grossa (O. F. Müller) have been studied by histological, histochemical and biochemical methods.

The species is predominantly an unselective microphagous omnivore and possesses two distinct feeding methods. Small particles such as bacteria, algae, diatoms and protozoa constitute the bulk of the diet and are filtered from sea water by means of a pharyngeal ciliary mechanism that does not involve the use of mucus; larger particles, mainly crustacean larvae, are caught by the proboscis and subsequently ingested intact without further treatment.

Digestion occurs in the intestine and combines extra- and intracellular processes which involve mainly carbohydrases apparently secreted by gastrodermal gland cells. This emphasis on carbohydrate digestion, atypical in rhynchocoelans, can be correlated with the species diet.

Fat and glycogen constitute the food reserves, with the former being the principal store and mainly deposited within the gastrodermal columnar cells.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, M., Kramer, S. P. & Seligman, A. M., 1964. The histochemical demonstration of pancreatic-like lipase and comparison with the distribution of esterase. J. Histochem. Cytochem., Vol. 12, pp. 364–83.CrossRefGoogle ScholarPubMed
Billett, F. & Mcgee-Russeix, S. M., 1955. The histochemical localization of β-glucuronidase in the digestive gland of the Roman Snail (Helix pomatia). Q. Jl microsc. Sci., Vol. 96, pp. 3548.Google Scholar
Burstone, M. S., 1958. Histochemical demonstration of aci phosphatase with naphthol AS-phosphates. J. natn Cancer Inst., Vol.21, pp. 523–39.Google Scholar
Burstone, M. S. & Folk, J. E., 1956. Histochemical demonstration of aminopeptidase. J. Histochem. Cytochem., Vol.4, pp. 217–26.CrossRefGoogle ScholarPubMed
Coe, W. R., 1943. Biology of the nemerteans of the Atlantic coast of North America. Trans. Conn. Acad. Arts Sci., Vol. 35, pp. 129328.Google Scholar
Danielli, J. F., 1952. Structural factors in cell permeability and secretions. In Symp. Soc. exp. Biol., No. 6, Structural Aspects of Cell Physiology, pp. 115. Secs. Danielli, J. F. And R., Brown.New York: Academic Press.Google Scholar
Davis, N. C. & Smith, E. L., 1955. Assay of proteolytic enzymes. In Methods of Biochemical Analysis, Vol. 2, pp. 215–57. Ed. D., Glick.New York: Interscience.CrossRefGoogle Scholar
Erasmus, D. A., 1957. Studies on phosphatase systems of cestodes. I. Studies On Taenia pisiformis (cysticercus and adult). Parasitology, Vol. 47, pp. 7080.CrossRefGoogle ScholarPubMed
Gibson, R., 1967. Occurrence of the entocommensal rhynchocoelan, Malacobdella grossa, in the Oval Piddock, Zirfaea crispata, On The Yorkshire coast. J. mar. biol. Ass. U.K., Vol. 47, pp. 301–17.CrossRefGoogle Scholar
Gibson, R., 1968. Studies on the biology of the entocommensal rhynchocoelan Malacobdella grossa. J. mar. biol. Ass. U.K., Vol. 48, pp. 637–56.CrossRefGoogle Scholar
Gibson, R. & Jennings, J. B., 1967. ‘Leucine aminopeptidase’ activity in the blood system of rhynchocoelan worms. Comp. Biochem. Physiol., Vol. 23, pp. 645–51.CrossRefGoogle ScholarPubMed
Gomori, G., 1939. Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. exp. Biol. Med., Vol. 42, pp. 23–6.CrossRefGoogle Scholar
Gomori, G., 1952. Microscopic Histochemistry. 273 pp. Chicago: University of Chicago Press.Google Scholar
Guberlet, J. E., 1928. Malacobdella grossa from the pacific coast of North America. Publs Puget Sound mar. biol. Stn, Vol. 5, pp. 113.Google Scholar
Halton, D. W., 1967. Studies on phosphatase activity in Trematoda. J. Parasit., Vol. 53, pp. 4654.CrossRefGoogle ScholarPubMed
Hausler, G., 1958. Zur Technik und spezifitat des histochemischen Carboanhydrasenachweises im Modellversuch und in Gewebsschnitten von Rattennieren. Histochemie, Vol. 1, pp. 2947.CrossRefGoogle Scholar
Hess, R. & Pearse, A. G. E., 1958. The histochemistry of indoxylesterase of rat kidney with special reference to its cathepsin-like activity. Brit. J. exp. Path., Vol. 39, pp. 292–9.Google ScholarPubMed
Holt, S. J., 1958. Studies in enzyme histochemistry. Proc. R. Soc. B, Vol. 148, pp. 465532.Google Scholar
Hugon, J. & Borgers, M., 1968. Fine structural localization of acid and alkaline phosphatase activities in the absorbing cells of the duodenum of rodents. Histochemie, Vol. 12, pp. 4266.CrossRefGoogle ScholarPubMed
Jennings, J. B., 1960. Observations on the nutrition of the rhynchocoelan Linens ruber (O. F. Müller). Biol. Bull. Mar. biol. Lab., Woods Hole, Vol. 119, pp. 189–96.CrossRefGoogle Scholar
Jennings, J. B., 1962a. A histochemical study of digestion and digestive enzymes in the rhynchocoelan Lineus ruber (O. F. Müller). Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 122, pp. 6372.CrossRefGoogle Scholar
Jennings, J. B., 1962b. Further studies on feeding and digestion in triclad Turbellaria. Biol. Bull. mar. biol. lab., Woods Hole, Vol. 123, pp. 571–81.CrossRefGoogle Scholar
Jennings, J. B. & Mettrick, D. F., 1968. Observations on the ecology, morphology and nutrition of the rhabdocoel turbellarian Syndesmis franciscana (Lehman, 1946) in Jamaica. Carib. J. Sci., Vol. 8, pp. 5767.Google Scholar
Johri, L. N. & Smyth, J. D., 1956. A histochemical approach to the study of helminth morphology. Parasitology, Vol. 46, pp. 107–16.CrossRefGoogle Scholar
Mcgee-Russell, S. M., 1955. A new reagent for the histochemical and chemical detection of calcium. Nature, Land., Vol. 175, P. 301.CrossRefGoogle ScholarPubMed
Mcmillin, H. C, 1924. The Life-History and Growth of the Razor Clam. 52 pp. State Of Washington: Department Of Fisheries, Olympia.Google Scholar
Noma, A., 1964. Studies on the phospholipid metabolism of the intestinal mucosa during fat absorption. Biochem. J., Vol. 56, pp. 522–32.CrossRefGoogle ScholarPubMed
Pearse, A. G. E., 1961. Histochemistry, Theoretical and Applied, 2nd. ed. 998 pp. London: Churchill.Google Scholar
Raghavan, S. S. & Ganguly, J., 1967. Studies on the intestinal absorption of triglycerides and fatty acids in rats. Indian J. Biochem., Vol. 4, pp. 6874.Google ScholarPubMed
Reisinger, E., 1926. Nemertini. Schnurwurmer. In Biologie der Tiere Deutschlands, No. 17, pp. 7.1–7.24. ed. P., Schulze.Google Scholar
Riepen, O., 1933. Anatomie Und Histologie Von Malacobdella grossa (Müll.). Z. wiss. Zool, Bd. 143, pp. 323496.Google Scholar
Wachstein, M. & Meisel, E., 1957. Histochemistry Of hepatic phosphatases at a physiologic pH, with special reference to the demonstration of bile canaliculi. Am. J. clin. Path., Vol. 27, pp. 1323.CrossRefGoogle Scholar
Wilson, C. B., 1900. The habits and early development of Cerebratulus lacteus Verrill). Q. Jl miarosc. Sci., Vol. 43, pp. 97198.Google Scholar