Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T01:53:20.043Z Has data issue: false hasContentIssue false

Ionic Regulation and Mode of adjustment to Reduced Salinity of the Starfish Asterias Rubens L.

Published online by Cambridge University Press:  11 May 2009

John Binyon
Affiliation:
Department of Zoology, Royal Holloway College, London

Extract

The perivisceral and ambulacral fluids of Asterias rubens have been shown to be not only isosmotic but isoionic with sea water, even if that medium is diluted by nearly half. However, there is a slight accumulation and regulation of calcium in the perivisceral fluid and to a much more marked extent, potassium in the water vascular system. The rapidity with which the potassium diffuses away when the ambulacral fluid is dialysed against sea water suggests that its presence in the water vascular system is due to an active accumulatory mechanism. This mechanism is capable of functioning when the animal encounters sea water of significantly reduced salinity, over the temperature range 0—20° C and extends throughout the season apparently uninfluenced by the breeding cycle or sex of the animal. Smaller animals tend to have a higher concentration of potassium in the water vascular system than do larger ones. Direct and indirect measurements of salt loss under various conditions, together with observations on the rate of lithium transfer, suggests that the integument is very permeable to many ions as well as to water. This supports the hypothesis that the ionic regulation observed results from an active process and not merely from an impermeability of the integument, although measurements with potassium itself have not yet been made.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethe, A. & Berger, E.J, 1931a. Variationen im Mineralbestand verschiedener Blutarten. Pflüg. Arch. ges. Physiol, Bd. 227, pp. 571–84.CrossRefGoogle Scholar
Bethe, A., & Berger, E.J,1931b. Die Durchlassigkeit der Korperoberflachen wirbelloser Tiere fur Jodionen. Pflug. Arch. ges. Physiol, Bd. 228, pp. 768–89.Google Scholar
Bialaszewicz, K., 1933. Contribution a l'etude de la composition minerale des liquides nourriciers chez les animaux marins. Arch. int. Physiol, T. 36, pp. 4153.Google Scholar
Binyon, J., 1961. Salinity tolerance and permeability to water of the starfish Asterias rubens L. J. mar. biol. Ass. U.K, Vol. 41, pp. 161–74.CrossRefGoogle Scholar
Bottazzi, F., 1897. La pressione osmotiques du sang des animaux marins. Arch. ital. Biol, T. 28, pp. 6172.Google Scholar
Bottazzi, F., 1906. Sulla regolazione della pressione osmotica negli organismi animali. Arch. Fisiol, Vol. 3, pp. 416–46.Google Scholar
Bottazzi, F., 1908. Osmotischer Druck und electrische Leitfahigheit der Flussigkeiten der einzelligen pflanzlichen und tierischen Organismen. Ergebn. Physiol Bd. 7, pp. 161402.CrossRefGoogle Scholar
Cole, W. H., 1940. The composition of fluids and sera of some marine animals and of the sea water in which they live. J. gen. Physiol, Vol. 23, pp. 575–84.CrossRefGoogle ScholarPubMed
Conway, E. J., 1957. Microdiffusion Analysis and Volumetric Error. London: Crosby Lockwood.Google Scholar
Dakin, W. J., 1908. Variations in the osmotic concentrations of the blood and coelomic fluids of aquatic animals caused by changes in the external medium. Biochem. J, Vol. 3, pp. 473–90.CrossRefGoogle ScholarPubMed
Davson, H., 1939. Studies on the permeability of erythrocytes (vi). The effect of reducing the salt content of the medium. Biochem. J, Vol. 33, pp. 389401.CrossRefGoogle Scholar
Drilhon-Courtois, A., 1934. Minerals in Crustacea. Ann. Physiol. Physicochim. biol, T. 10, pp. 377414.Google Scholar
Duval, M., 1924. Recherches sur le milieu interieur des invertebres marins. Bull. Soc. Sci. Arcachon, T. 21, pp. 33–9.Google Scholar
Duval, M.,1926. Recherches physico-chimiques et physiologiques sur le milieu interieur des animaux aquatiques. Ann. Inst. océanogr. Monaco, N.S., Vol. 2, pp. 233407.Google Scholar
Fredericq, L., 1901. Sur la concentration moleculaire du sang et des tissues chez les animaux aquatiques. Bull. Acad. Belg. Cl. Sci, T. 8, pp. 428–54.Google Scholar
Galtsoff, P. S. & Loosanoff, V. L., 1939. Natural history and method of controlling the starfish Asterias forbesi Desor. Bull. U.S. Bur. Fish, Vol., 49, pp. 75132.Google Scholar
Garrey, W. E., 1904. Osmotic concentration of blood of marine animals. Biol. Bull., Woods Hole, Vol. 8, pp. 257–70.CrossRefGoogle Scholar
Giordano, F. & Harper, A., 1950. The amino acids of a starfish and a sea urchin. Wasmann J. biol, Vol. 8, pp. 129–32.Google Scholar
Griffiths, A. B., 1892. On the blood of the invertebrata. Proc. roy. Soc. Edinb, Vol. 19, pp. 116–30.CrossRefGoogle Scholar
Harvey, H. W., 1955. The Chemistry and Fertility of Seazuaters. Cambridge: University Press.Google Scholar
Henri, V. & Lalou, S., 1930a. Regulation osmotiques des liquides internes chez les Echinodermes. C.R. Acad. Sci., Paris, T. 137, p. 721.Google Scholar
Henri, V. & Lalou, S., 1903b. Regulation osmotiques des liquides internes chez les Oursins. C.R. Soc. Biol., Paris T. 55, p. 1242.Google Scholar
Henri, V. & Lalou, S., 1903c. Regulation osmotiques des liquides internes chez les Holothuries. C.R. Soc. Biol., Paris, T. 55, p. 1243.Google Scholar
Henri, V. & Lalou, S., 1904. Regulation osmotiques des liquides internes chez les Echinodermes. J. Physiol. Path, gen, T. 6, p. 9.Google Scholar
Irving, L., 1926. Regulation of the hydrogen ion concentration and its relation to metabolism and respiration in the starfish. J. gen. Physiol, Vol. 10, pp. 345–58.CrossRefGoogle ScholarPubMed
Koizumi, T., 1932. Studies on the exchange and the equilibrium of water and electolytes in a holothurian Caudina chilensis (Muller). (i) Permeability of the animal surface to water and ions in sea water together with osmotic and ionic equilibrium between the body fluid of the animal in its surrounding sea water, involving some corrections to our previous paper. Sci. Rep. Tohoku Univ, Ser. 4, Vol. 7, pp. 259311.Google Scholar
Koizumi, T., 1936. Studies on the exchange and the equilibrium of water and electrolytes in a holothurian Caudina chilensis (Muller). (iii). On the velocity of permeation of K, Ca, Na, Mg, through isolated body wall. Sci. Rep. Tohoku Univ, Ser. 4, Vol. 10, pp. 269–75.Google Scholar
Maloeuf, N. S. R., 1938. Studies on the respiration and osmoregulation of animals. Z. vergl. Physiol, Bd. 25, pp. 128.CrossRefGoogle Scholar
Milton, R. F. & Waters, W. A., 1949. Methods of Quantitative Micro-Analysis. London: Arnold.Google Scholar
Myers, R. G., 1920. A chemical study of the blood of several invertebrate animals. J. biol. Chem, Vol., 41, pp. 119–35.CrossRefGoogle Scholar
Parker, B. & Cole, W. H., 1940. Studies of the body fluids and sera of some marine invertebrates. Bull. Mt. Desert I. biol. Lab., 1939, pp. 3638.Google Scholar
Quinton, R., 1899. Communication osmotique: Chez l'lnvertebrate marin normal entre le milieu interne de ranimal et le milieu exterieux. C.R. Acad. Sci., Paris, T. 131, p. 905.Google Scholar
Robertson, J. D., 1939. Ionic composition of the bloods of Homarus, Cancer & Echinus. J. exp. Biol, Vol. 16, pp. 387–97.CrossRefGoogle Scholar
Robertson, J. D., 1949. Ionic regulation in some marine invertebrates. J. exp. Biol, Vol. 26, pp. 182200.CrossRefGoogle ScholarPubMed
Robertson, J. D., 1953. Further studies on ionic regulation in marine invertebrates. J. exp. Biol, Vol. 30, pp. 277–96.CrossRefGoogle Scholar
Schlieper, C., 1930. Die osmoregulation wasserlebender Tiere. Biol. Rev, Vol. 5, pp. 309–56.CrossRefGoogle Scholar
Schlieper, C., 1957. Comparative study of Asterias rubens and Mytilus edulis from the North Sea and the Western Baltic Sea. Ann. Biol, Vol. 33, pp. 117–27.Google Scholar
Vetokhin, I. A., 1931. The osmotic pressure in the external and internal fluids of animals by cryoscopic methods, on the Murman Coast. (Paper in Russian, German summary.)Bull. Inst. Rech. biol. Perm. (Molotov), T. 7, pp. 293302.Google Scholar
Vinogradov, A., 1953. The elementary chemical composition of marine organisms. Sears Found, mar. Res Memoir No. 2.Google Scholar
Webb, D. A., 1939. The micro-estimation of sulphates in sea water and the body fluids of marine animals. J. exp. Biol, Vol. 16, pp. 438445.CrossRefGoogle Scholar