Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T00:56:03.406Z Has data issue: false hasContentIssue false

First records of two rays and three bony fishes for the Galapagos Islands

Published online by Cambridge University Press:  04 April 2023

Magdalena E. Mossbrucker*
Affiliation:
Charles Darwin Foundation, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador
David Acuña-Marrero
Affiliation:
Charles Darwin Foundation, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador
Megan E. Cundy
Affiliation:
Charles Darwin Foundation, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador
Denisse Fierro-Arcos
Affiliation:
Charles Darwin Foundation, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Jenifer M. Suárez-Moncada
Affiliation:
Galapagos National Park Directorate, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador
Etienne Rastoin-Laplaine
Affiliation:
Charles Darwin Foundation, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador School of Molecular and Life Sciences, Curtin University, Bentley 6102, Western Australia, Australia
Pelayo Salinas-de-León
Affiliation:
Charles Darwin Foundation, Charles Darwin Research Station, Av. Charles Darwin s/n, Puerto Ayora, Galapagos, Ecuador Save Our Seas Foundation Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, 33004 Florida, USA
*
Author for correspondence: Magdalena E. Mossbrucker, E-mail: [email protected]

Abstract

The Galapagos Islands lie within the oceanic ecoregion of the Tropical Eastern Pacific, which has a unique fish assemblage composition due to the influence of several ocean currents and El Niño Southern Oscillation (ENSO) events. In the El Niño phase of these events, water temperature changes facilitate the movement of fish species between oceanic ecoregions, as well as across the Eastern Pacific Barrier. Here, we present five new fish records for the Galapagos Marine Reserve based on underwater imagery. These include two rays (Mobula thurstoni and Myliobatis longirostris) and three bony fishes (Lobotes pacifica, Lutjanus colorado and Sphyraena stellata). Of these, the first species is proposed as potentially resident to the Galapagos, and the latter four as vagrant species in the Galapagos until further sightings can conclusively determine their status. The effects of ENSO, the use of underwater video technology, and the importance of up-to-date and accurate species listings to understand the impact of the climate crisis are discussed.

Type
Marine Record
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña-Marrero, D and Salinas-de-León, P (2013) New record of two Indo-Pacific reef fish, Caranx ignobilis and Naso annulatus, from the Galapagos Islands. Marine Biodiversity Records 6, 15.CrossRefGoogle Scholar
Acuña-Marrero, D, Smith, A, Salinas-de-León, P, Harvey, E, Pawley, M and Anderson, M (2018) Spatial patterns of distribution and relative abundance of coastal shark species in the Galapagos marine reserve. Marine Ecology Progress Series 593, 7395.CrossRefGoogle Scholar
Allen, GR (1985) Snappers of the World: An Annotated and Illustrated Catalogue of Lutjanid Species Known to Date. FAO Species Catalogue. FAO: Rome.Google Scholar
Allen, GR and Erdmann, MV (2012) Reef fishes of the East Indies, Perth, Australia: Trop. Reef Research, vol I-III.Google Scholar
Banks, S (2002) Ambiente Físico. In Danulat, E and Edgar, GJ (eds), Reserva Marina de Galápagos. Línea Base de la Biodiversidad, Puerto Ayora, Santa Cruz, Galápagos: Fundacion Charles Darwin, Servicio Parque Nacional Galapagos, 2235.Google Scholar
Béarez, P and Séret, B (2009) Les poissons. In Clipperton: Environnement et Biodiversité d'un Microcosme Océanique. Paris: Muséum National d'Histoire Naturelle, pp. 143154.Google Scholar
Bessudo, S, Acero, A, Rojas, P and Cotto, A (2010) Lutjanus colorado. The IUCN Red List of Threatened Species, e.T183531A, 1–8.Google Scholar
Betancur-R, R, Wiley, EO, Arratia, G, Acero A, Bailly N, Miya M, Lecointre G and Ortí, G (2017) Phylogenetic classification of bony fishes. BMC Evolutionary Biology 17, 162.CrossRefGoogle ScholarPubMed
Briggs, JC (1974) Marine Zoogeography. New York, NY: McGraw-Hill.Google Scholar
Brooks, EJ, Sloman, KA, Sims, DW and Danylchuk, AJ (2011) Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endangered Species Research 13, 231243.CrossRefGoogle Scholar
Cappo, MA, Harvey, EB, Malcolm, HC and Speare, PA (1999) Potential of video techniques to monitor diversity, abundance and size of fish in studies of marine protected areas. In Beumer, DCSJP and Grant, A (eds), Video Techniques to Monitor Fish in MPAs. Queensland: University of Queensland, pp. 455464.Google Scholar
Cerutti-Pereyra, F, Yánez, AB, Ebert, DA, Arnés-Urgellés, C and Salinas-de-León, P (2018) New record and range extension of the deepsea skate, Bathyraja abyssicola (Chondrichthyes: Arhynchobatidae), in the Galapagos Islands. Journal of the Ocean Science Foundation 30, 8589.Google Scholar
Chirichigno, N and Cornejo, M (2001) Catálogo comentado de los peces marinos del mar del Perú. Callao: Instituto del Mar del Perú.Google Scholar
Compagno, LJV, Ebert, DA and Smale, MJ (1989) Guide to the Sharks and Rays of Southern Africa. Cape Town: Struik.Google Scholar
Daget, J (1986) Sphyraenidae. Check-List of the Freshwater Fishes of Africa 2, 350351.Google Scholar
Ekman, S, Carter, GS, de Beer, GR, Hogben, LT, Elton, C, Carpenter, K, Brambell, FWR and de Beaufort, JF ( 1953) Zoogeography of the Sea. London: Sidgwick and Jackson.Google Scholar
Glynn, PW, Mones, AB, Podestá, GP, Colbert, A and Colgan, MW (2017) El Niño-Southern Oscillation: effects on Eastern Pacific Coral Reefs and associated biota. In Glynn P, Manzello D and Enochs I (eds), Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Miami: Springer Science + Business Media Dordrecht, pp. 251290. http://dx.doi.org/10.1007/978-94-017-7499-4_8.CrossRefGoogle Scholar
Gold, JR, Willis, SC, Renshaw, MA, Buentello, A, Walker, HJ, Puritz, JB, Hollenbeck, CM and Voelker, G (2015) Phylogenetic relationships of tropical Eastern Pacific snappers (Lutjanidae) inferred from mitochondrial DNA sequences. Systematics and Biodiversity 13, 596607.CrossRefGoogle Scholar
Grove, JS and Lavenberg, RJ (1997) The Fishes of the Galapagos Islands. Stanford, CA: Stanford University Press.Google Scholar
Heemstra, C (1995) Lobotidae Dormilonas. In Guía de Las Naciones Unidas Para La Alimentación (FAO) Para Identificación de Especies Para Los Fines de La Pesca, 1226. Rome: FAO.Google Scholar
Heylings, P, Bensted-Smith, R and Altamirano, M (2002) Zonificación e historia de la Reserva Marina de Galápagos. In Danulat, E and Edgar, GJ (eds), Reserva Marina de Galápagos. Línea Base de la Biodiversidad, Puerto Ayora: Fundacion Charles Darwin, Servicio Parque Nacional Galapagos, pp. 1021.Google Scholar
Lea, R, Bearez, P, van der Heiden, A, Acero, A and Cotta, A (2010) Lobotes pacificus. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T178077A7484332.en Copyright:.CrossRefGoogle Scholar
Lessios, HA and Robertson, DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proceedings of the Royal Society B: Biological Sciences 273, 22012208.CrossRefGoogle ScholarPubMed
Lezama-Ochoa, N, Hall, M, Román, M and Vogel, N (2019) Spatial and temporal distribution of mobulid ray species in the eastern Pacific Ocean ascertained from observer data from the tropical tuna purse-seine fishery. Environmental Biology of Fishes 102, 117.CrossRefGoogle Scholar
Love, MS, Mecklenburg, CW and Mecklenburg, TA (2005) Resource inventory of marine and estuarine fishes of the West Coast and Alaska: A checklist of North Pacific and Arctic Ocean species from Baja California to the Alaska-Yukon border. Seattle, WA: US Department of the Interior, US Geological Survey, Biological Resources Division.Google Scholar
Marshall, A, Barreto, R, Bigman, JS, Carlson, J, Fernando, D, Fordham, S, Francis, MP, Herman, K, Jabado, RW, Liu, KM, Pardo, SA, Rigby, CL, Romanov, E, Smith, WD and Walls, RHL (2019) Mobula thurstoni. In The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T60200A124451622.en Disclaimer.CrossRefGoogle Scholar
Martin, NJ, Conroy, JL, Noone, D, Cobb, KM, Konecky, BL and Rea, S (2018) Seasonal and ENSO influences on the stable isotopic composition of Galápagos precipitation. Journal of Geophysical Research: Atmospheres 123, 261275.CrossRefGoogle Scholar
McCosker, JE and Rosenblatt, RH (2010) The fishes of the Galápagos Archipelago: an update. Proceedings of the California Academy of Sciences 61, 167195.Google Scholar
McEachran, JD and Notarbartolo di Sciara, G (1995a) Mobulidae. Mantas, diablos. Guia FAO Para Identification de Especies Para Los Fines de La Pesca. Pacifico Centro Oriental 3, 759764.Google Scholar
McEachran, JD and Notarbartolo di Sciara, G (1995b) Myliobatidae: águilas marinas. Guía FAO Para La Identificación de Especies Para Los Fines de La Pesca. Pacífico Centro-Oriental 2, 765768.Google Scholar
McEachran, JD and Séret, B (1990) Mobulidae. Check-List of the Fishes of the Eastern Tropical Atlantic (CLOFETA) 1, 7376.Google Scholar
Merlen, G (1988) A Field Guide to the Fishes of Galapagos. London: Wilmot Books.Google Scholar
Morishita, S and Motomura, H (2020) Sphyraena stellata, a new barracuda from the Indo-Pacific, with redescriptions of S.helleri Jenkins, 1901 and S. novaehollandiae Günther, 1860 (Perciformes: Sphyraenidae). Zootaxa 4772, 545566.CrossRefGoogle Scholar
Myers, RF (1991) Micronesian Reef Fishes. Coral Graphics, Barrigada, Guam. Ref1602. Fishbase. Org. http://Www.Discoverlife.Org/mp/20q.Google Scholar
Nagelkerken, I, de Graaff, D, Peeters, M, Bakker, EJ and van der Velde, G (2006) Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306, 257268.Google Scholar
Naylor, G, Caira, J, Jensen, K, Rosana, K, Straube, N andLakner, C (2012) Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. In Carrier JC, Musick JA and Heithaus MR (eds), Biology of Sharks and Their Relatives, 2nd Edn. Boca Raton, FL: CRC Press, pp. 3156. http://dx.doi.org/10.1201/b11867-4.CrossRefGoogle Scholar
Pequeño, G (1989) Peces de Chile. Lista sistematica revisada y commentada. Revista de Biologia Marina 24, 1132.Google Scholar
Randall, JE, Allen, GR and Steene, RC (1998) Fishes of the Great Barrier Reef and Coral Sea. Honolulu, Hawaii: University of Hawaii Press.Google Scholar
Rastoin-Laplane, E, Goetze, J, Harvey, ES, Acuña-Marrero, D, Fernique, P and Salinas-de-León, P (2020) A diver operated stereo-video approach for characterizing reef fish spawning aggregations: the Galapagos marine reserve as case study. Estuarine, Coastal and Shelf Science 243, 106629.CrossRefGoogle Scholar
Robertson, DR and Cramer, KL (2009) Shore fishes and biogeographic subdivisions of the tropical Eastern Pacific. Marine Ecology Progress Series 380, 117.CrossRefGoogle Scholar
Robertson, DR, Grove, JS and McCosker, JE (2004) Tropical transpacific shore fishes. Pacific Science 58, 507565.CrossRefGoogle Scholar
Salinas-de-León, P, Rastoin, E and Acuña-Marrero, D (2015) First record of a spawning aggregation for the tropical Eastern Pacific endemic grouper Mycteroperca olfax in the Galapagos marine reserve. Journal of Fish Biology 87, 179186.CrossRefGoogle ScholarPubMed
Salinas de León, P, Acuña-Marrero, D, Rastoin, E, Friedlander, AM, Donovan, MK and Sala, E (2016) Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, 125.CrossRefGoogle ScholarPubMed
Santana-Garcon, J, Braccini, M, Langlois, TJ, Newman, SJ, McAuley, RB and Harvey, ES (2014) Calibration of pelagic stereo-BRUVs and scientific longline surveys for sampling sharks. Methods in Ecology and Evolution 5, 824833.CrossRefGoogle Scholar
Smith, WD and Bizzarro, JJ (2006) Myliobatis longirostris. http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T60125A12308904.en.CrossRefGoogle Scholar
Spalding, MD, Fox, HE, Allen, GR, Davidson, N, Ferdaña, ZA, Finlayson, M, Halpern, BS, Jorge, MA, Lombana, AL, Lourie, SA, Martin, KD, McManus, E, Molnar, J, Recchia, CA and Robertson, J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573583.CrossRefGoogle Scholar
Tanner, MK, Moity, N, Costa, MT, Jarrin, JRM, Aburto-Oropeza, O and Salinas-de-León, P (2019) Mangroves in the Galapagos: ecosystem services and their valuation. Ecological Economics 160, 1224.CrossRefGoogle Scholar
Tortonese, E (1990) Lobotidae Checklist of the fishes of the Eastern Tropical Atlantic. Paris: UNESCO.Google Scholar
Victor, BC, Wellington, GM, Robertson, DR and Ruttenberg, BI (2001) The effect of El Nino Southern Oscillation events on the distribution of reef-associated labrid fishes in the eastern Pacific Ocean. Bulletin of Marine Science 69, 279288.Google Scholar
Wang, B, Luo, X, Yang, Y, Sun, W, Cane, MA, Cai, W, Yeh, S and Liu, J (2019) Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences USA 116, 2251222517.CrossRefGoogle ScholarPubMed

Mossbrucker et al. supplementary material

Mossbrucker et al. supplementary material 1

Download Mossbrucker et al. supplementary material(Video)
Video 136.9 MB
Supplementary material: Image

Mossbrucker et al. supplementary material

Mossbrucker et al. supplementary material 2

Download Mossbrucker et al. supplementary material(Image)
Image 403.6 KB
Supplementary material: Image

Mossbrucker et al. supplementary material

Mossbrucker et al. supplementary material 3

Download Mossbrucker et al. supplementary material(Image)
Image 418.6 KB