Let
$F$
be a germ of a holomorphic function at
$0$
in
${\bb C}^{n+1}$
, having
$0$
as a critical point not necessarily isolated, and let
$\tilde{X}:= \sum^n_{j=0} X^j(\partial/\partial z_j)$
be a germ of a holomorphic vector field at
$0$
in
${\bb C}^{n+1}$
with an isolated zero at
$0$
, and tangent to
$V := F^{-1}(0)$
. Consider the
${\cal O}_{V,0}$
-complex obtained by contracting the germs of Kähler differential forms of
$V$
at
$0$
\renewcommand{\theequation}{0.\arabic{equation}}
\begin{equation}
\Omega^i_{V,0}:=\frac{\Omega^i_{{\bb C}^{n+1},0}}{F\Omega^i_{{\bb C}^{n+1},0}+dF\wedge{\Omega^{i-1}}_{{\bb C}^{n+1}},0}
\end{equation}
with the vector field <formula form="inline" disc="math" id="frm14"><formtex notation="AMSTeX">
$X:=\tilde{X}|_V$
on
$V$
:
\begin{equation}
0\longleftarrow {\cal O}_{V,0} {\buildrel X\over\longleftarrow}\,\Omega_{V,0}^1\,{\buildrel X\over\longleftarrow}\, \cdots \,{\buildrel X\over\longleftarrow}\, \Omega_{V,0}^n\, {\buildrel X\over\longleftarrow}\, \Omega_{V,0}^{n+1}\longleftarrow 0.
\end{equation}