Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:31:03.261Z Has data issue: false hasContentIssue false

ON 4-DIMENSIONAL MAPPING TORI AND PRODUCT GEOMETRIES

Published online by Cambridge University Press:  01 August 1998

JONATHAN A. HILLMAN
Affiliation:
School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
Get access

Abstract

The paper gives simple necessary and sufficient conditions for a closed 4-manifold to be homotopy equivalent to the mapping torus of a self homotopy equivalence of a PD3-complex. This is a homotopy analogue of the Stallings and Farrell fibration theorems available in other dimensions. The paper also considers 4-manifolds which admit a geometry of Euclidean factor type and complex surfaces which fibre over S1.

Type
Notes and Papers
Copyright
The London Mathematical Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)