Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Frénod, Emmanuel
Mouton, Alexandre
and
Sonnendrücker, Eric
2007.
Two-scale numerical simulation of the weakly compressible 1D isentropic Euler equations.
Numerische Mathematik,
Vol. 108,
Issue. 2,
p.
263.
Allaire, Grégoire
and
Raphael, Anne-Lise
2007.
Homogenization of a convection–diffusion model with reaction in a porous medium.
Comptes Rendus. Mathématique,
Vol. 344,
Issue. 8,
p.
523.
Allaire, Grégoire
2008.
Quantum Transport.
Vol. 1946,
Issue. ,
p.
1.
Allaire, Grégoire
Palombaro, Mariapia
and
Rauch, Jeffrey
2009.
Diffractive behavior of the wave equation in periodic media: weak convergence analysis.
Annali di Matematica Pura ed Applicata,
Vol. 188,
Issue. 4,
Allaire, Grégoire
and
Piatnitski, Andrey
2010.
Homogenization of nonlinear reaction-diffusion equation with a large reaction term.
ANNALI DELL'UNIVERSITA' DI FERRARA,
Vol. 56,
Issue. 1,
p.
141.
Allaire, Grégoire
Brizzi, Robert
Mikelić, Andro
and
Piatnitski, Andrey
2010.
Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media.
Chemical Engineering Science,
Vol. 65,
Issue. 7,
p.
2292.
Allaire, Grégoire
Mikelić, Andro
and
Piatnitski, Andrey
2010.
Homogenization Approach to the Dispersion Theory for Reactive Transport through Porous Media.
SIAM Journal on Mathematical Analysis,
Vol. 42,
Issue. 1,
p.
125.
Henning, Patrick
and
Ohlberger, Mario
2010.
The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift.
Networks & Heterogeneous Media,
Vol. 5,
Issue. 4,
p.
711.
Allaire, G.
Pankratova, I.
and
Piatnitski, A.
2012.
Homogenization of a nonstationary convection-diffusion equation in a thin rod and in a layer.
SeMA Journal,
Vol. 58,
Issue. 1,
p.
53.
Schmuck, M.
2012.
First error bounds for the porous media approximation of the Poisson‐Nernst‐Planck equations.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
Vol. 92,
Issue. 4,
p.
304.
Schmuck, Markus
Pradas, Marc
Pavliotis, Grigorios A
and
Kalliadasis, Serafim
2013.
Derivation of effective macroscopic Stokes–Cahn–Hilliard equations for periodic immiscible flows in porous media.
Nonlinearity,
Vol. 26,
Issue. 12,
p.
3259.
Schmuck, Markus
Pavliotis, Grigorios A.
and
Kalliadasis, Serafim
2013.
Proceedings of the European Conference on Complex Systems 2012.
p.
1005.
Xu, Shixin
and
Yue, Xingye
2015.
Homogenization of thermal-hydro-mass transfer processes.
Discrete & Continuous Dynamical Systems - S,
Vol. 8,
Issue. 1,
p.
55.
Schmuck, Markus
and
Bazant, Martin Z.
2015.
Homogenization of the Poisson--Nernst--Planck equations for Ion Transport in Charged Porous Media.
SIAM Journal on Applied Mathematics,
Vol. 75,
Issue. 3,
p.
1369.
Ouaki, Franck
Allaire, Grégoire
Desroziers, Sylvain
and
Enchéry, Guillaume
2015.
A priori error estimate of a multiscale finite element method for transport modeling.
SeMA Journal,
Vol. 67,
Issue. 1,
p.
1.
Hutridurga, Harsha
and
Allaire, Grégoire
2015.
On the homogenization of multicomponent transport.
Discrete and Continuous Dynamical Systems - Series B,
Vol. 20,
Issue. 8,
p.
2527.
Henning, Patrick
and
Ohlberger, Mario
2016.
A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift.
Discrete and Continuous Dynamical Systems - Series S,
Vol. 9,
Issue. 5,
p.
1393.
Allaire, Grégoire
and
Hutridurga, Harsha
2016.
Upscaling nonlinear adsorption in periodic porous media – homogenization approach.
Applicable Analysis,
Vol. 95,
Issue. 10,
p.
2126.
Abdulle, A.
and
Huber, M. E.
2017.
Numerical homogenization method for parabolic advection–diffusion multiscale problems with large compressible flows.
Numerische Mathematik,
Vol. 136,
Issue. 3,
p.
603.
Scovazzi, Guglielmo
Wheeler, Mary F.
Mikelić, Andro
and
Lee, Sanghyun
2017.
Analytical and variational numerical methods for unstable miscible displacement flows in porous media.
Journal of Computational Physics,
Vol. 335,
Issue. ,
p.
444.