Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T20:22:53.809Z Has data issue: false hasContentIssue false

Bimanual coordination in alcohol-exposed children: Role of the corpus callosum

Published online by Cambridge University Press:  01 July 2004

TRESA M. ROEBUCK-SPENCER
Affiliation:
National Rehabilitation Hospital, Washington, DC 20010
SARAH N. MATTSON
Affiliation:
Center for Behavioral Teratology, San Diego, CA 92120
SARAH DEBOARD MARION
Affiliation:
Travis Research Institute, Fuller Graduate School of Psychology, Pasadena, CA
WARREN S. BROWN
Affiliation:
Travis Research Institute, Fuller Graduate School of Psychology, Pasadena, CA
EDWARD P. RILEY
Affiliation:
Center for Behavioral Teratology, San Diego, CA 92120

Abstract

The corpus callosum (CC) is one of several brain structures affected in children prenatally exposed to alcohol. This structure plays a major role in coordinating motor activity from opposite sides of the body, and deficits in bimanual coordination have been documented in individuals with agenesis of or damage to the CC, particularly when the task is performed without visual feedback. The Bimanual Coordination Test was used to assess speed and accuracy on a task where both hands must coordinate to guide a cursor through angled pathways providing measures of interhemispheric interaction or the ability of the two hemispheres to coordinate activity via the corpus callosum. Twenty-one children with fetal alcohol spectrum disorders (FASD) and 17 non-exposed control children (CON), matched closely in age, sex, and ethnicity were tested. For trials with visual feedback (WV), children with FASD were slower than CON children but were equally accurate. Although statistically significant group differences were not observed on most trials completed without visual feedback (WOV), accuracy of the FASD group on WOV trials was highly variable. Group differences in accuracy on WOV angles approached significance after accounting for performance on the WV angles, and children with FASD were significantly less accurate on an individual angle believed to be particularly sensitive to interhemispheric interaction. These results indicate that children with FASD are slower than CON children but equally accurate on basic visuomotor tasks. However, as task complexity and reliance on interhemispheric interaction increases, children with FASD demonstrate variable and inaccurate performance. Preliminary analyses suggest that inaccurate performance on the bimanual coordination task, and presumably impaired callosal functioning, may be related to the attention and problem solving impairments commonly reported in children with FASD. (JINS, 2004, 10, 536–548.)

Type
Research Article
Copyright
2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achenbach, T.M. (1991). Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont Department of Psychiatry.
Andres, F.G., Mima, T., Schulman, A.E., Dichgans, J., Hallett, M., & Gerloff, C. (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain, 122, 855870.CrossRefGoogle Scholar
Archibald, S.L., Fennema-Notestine, C., Gamst, A., Riley, E.P., Mattson, S.N., & Jernigan, T.L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Developmental Medicine and Child Neurology, 43, 148154.CrossRefGoogle Scholar
Aronson, M., Kyllerman, M., Sabel, K.G., Sandin, B., & Olegard, R. (1985). Children of alcoholic mothers. Developmental, perceptual and behavioural characteristics as compared to matched controls. Acta Paediatrica Scandinavica, 74, 2735.Google Scholar
Banich, M.T. (1998). The missing link: The role of interhemispheric interaction in attentional processing. Brain and Cognition, 36, 128157.CrossRefGoogle Scholar
Beery, K.E. (1997). The Visual-Motor Integration Test: Administration, scoring and teaching manual (Rev. 4th ed.). Parsippany, NJ: Modern Curriculum Press.
Bookstein, F.L., Sampson, P.D., Connor, P.D., & Streissguth, A.P. (2002a). Midline corpus callosum is a neuroanatomical focus of fetal alcohol damage. Anatomical Record, 269, 162174.Google Scholar
Bookstein, F.L., Sampson, P.D., Streissguth, A.P., & Connor, P.D. (2001). Geometric morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-affected brain. Teratology, 64, 432.CrossRefGoogle Scholar
Bookstein, F.L., Streissguth, A.P., Sampson, P.D., Connor, P.D., & Barr, H.M. (2002b). Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. NeuroImage, 15, 233251.Google Scholar
Brown, W.S. (1991). The Bimanual Coordination Test: Version 1. Pasadena, CA: The Travis Institute.
Brown, W.S., Jeeves, M.A., Dietrich, R., & Burnison, D.S. (1999). Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologia, 37, 11651180.CrossRefGoogle Scholar
Brown, W.S. & Paul, L.K. (2000). Cognitive and psychosocial deficits in agenesis of the corpus callosum with normal intelligence. Cognitive Neuropsychiatry, 5, 135157.CrossRefGoogle Scholar
Clarren, S.K., Alvord, E.C., Sumi, S.M., Streissguth, A.P., & Smith, D.W. (1978). Brain malformations related to prenatal exposure to ethanol. Journal of Pediatrics, 92, 6467.CrossRefGoogle Scholar
Coulter, C.L., Leech, R.W., Schaefer, G.B., Scheithauer, B.W., & Brumback, R.A. (1993). Midline cerebral dysgenesis, dysfunction of the hypothalamic-pituitary axis, and fetal alcohol effects. Archives of Neurology, 50, 771775.CrossRefGoogle Scholar
Davidson, R.J., Leslie, S.C., & Saron, C. (1990). Reaction time measures of interhemispheric transfer time in reading disabled and normal children. Neuropsychologia, 28, 471485.CrossRefGoogle Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1994). Manual for the California Verbal Learning Test–Children's Version. San Antonio, TX: The Psychological Corporation.
Eliassen, J.C., Baynes, K., & Gazzaniga, M.S. (1999). Direction information coordinated via the posterior third of the corpus callosum during bimanual movements. Experimental Brain Research, 128, 573577.CrossRefGoogle Scholar
Eliassen, J.C., Baynes, K., & Gazzaniga, M.S. (2000). Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers. Brain, 123, 25012511.CrossRefGoogle Scholar
Fagard, J., Morioka, M., & Wolff, P.H. (1985). Early stages in the acquisition of a bimanual motor skill. Neuropsychologia, 23, 535543.CrossRefGoogle Scholar
Ferriss, G.S. & Dorsen, M.M. (1975). Agenesis of the corpus callosum. 1. Neuropsychological studies. Cortex, 11, 95122.Google Scholar
Fischer, M., Ryan, S.B., & Dobyns, W.B. (1992). Mechanisms of interhemispheric transfer and patterns of cognitive function in acallosal patients of normal intelligence. Archives of Neurology, 49, 271277.CrossRefGoogle Scholar
Geffen, G., Nilsson, J., Quinn, K., & Teng, E.L. (1985). The effect of lesions of the corpus callosum on finger localization. Neuropsychologia, 23, 497514.CrossRefGoogle Scholar
Geffen, G.M., Forrester, G.M., Jones, D.L., & Simpson, D.A. (1994a). Auditory verbal learning and memory in cases of callosal agenesis. In M. Lassonde & M.A. Jeeves (Eds.), Callosal agenesis: A natural split brain? Advances in Behavioral Biology (pp. 247260). New York: Plenum Press.
Geffen, G.M., Jones, D.L., & Geffen, L.B. (1994b). Interhemispheric control of manual motor activity. Behavioural Brain Research, 64, 131140.Google Scholar
Gerloff, C. & Andres, F.G. (2002). Bimanual coordination and interhemispheric interaction. Acta Psycholica, 110, 161186.CrossRefGoogle Scholar
Giedd, J.N., Castellanos, F.X., Casey, B.J., Kozuch, P., King, A.C., Hamburger, S.D., & Rapoport, J.L. (1994). Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. American Journal of Psychiatry, 151, 665669.Google Scholar
Gladstone, M., Best, C.T., & Davidson, R.J. (1989). Anomalous bimanual coordination among dyslexic boys. Developmental Psychology, 25, 236246.CrossRefGoogle Scholar
Gott, P.S. & Saul, R.E. (1978). Agenesis of the corpus callosum: Limits of functional compensation. Neurology, 28, 12721279.CrossRefGoogle Scholar
Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtiss, G. (1993). Wisconsin Card Sorting Test manual. Odessa, FL: Psychological Assessment Resources, Inc.
Hines, R.J., Paul, L.K., & Brown, W.S. (2002). Spatial attention in agenesis of the corpus callosum: shifting attention between visual fields. Neuropsychologia, 40, 18041814.CrossRefGoogle Scholar
Hynd, G.W., Hall, J., Novey, E.S., Eliopulos, D., Black, K., Gonzalez, J.J., Edmonds, J.E., Riccio, C., & Cohen, M. (1995). Dyslexia and corpus callosum morphology. Archives of Neurology, 52, 3238.CrossRefGoogle Scholar
Hynd, G.W., Semrud-Clikeman, M., Lorys, A.R., Novey, E.S., & Eliopulos, D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Archives of Neurology, 47, 919926.CrossRefGoogle Scholar
Hynd, G.W., Semrud-Clikeman, M., Lorys, A.R., Novey, E.S., Eliopulos, D., & Lyytinen, H. (1991). Corpus callosum morphology in attention deficit-hyperactivity disorder: Morphometric analysis of MRI. Journal of Learning Disabilities, 24, 141146.CrossRefGoogle Scholar
Janzen, L.A., Nanson, J.L., & Block, G.W. (1995). Neuropsychological evaluation of preschoolers with fetal alcohol syndrome. Neurotoxicology and Teratology, 17, 273279.CrossRefGoogle Scholar
Jeeves, M.A., Silver, P.H., & Jacobson, I. (1988a). Bimanual co-ordination in callosal agenesis and partial commissurotomy. Neuropsychologia, 26, 833850.Google Scholar
Jeeves, M.A., Silver, P.H., & Milne, A.B. (1988b). Role of the corpus callosum in the development of a bimanual motor skill. Developmental Neuropsychology, 4, 305323.Google Scholar
Jeret, J.S. & Serur, D. (1991). Fetal alcohol syndrome in adolescents and adults [Letter to the editor]. Journal of the American Medical Association, 266, 1077.CrossRefGoogle Scholar
Johnson, V.P., Swayze, V.W., II, Sato, Y., & Andreasen, N.C. (1996). Fetal alcohol syndrome: craniofacial and central nervous system manifestations. American Journal of Medical Genetics, 61, 329339.3.0.CO;2-P>CrossRefGoogle Scholar
Jones, K.L. & Smith, D.W. (1973). Recognition of the fetal alcohol syndrome in early infancy. Lancet, 2, 9991001.CrossRefGoogle Scholar
Jones, K.L., Smith, D.W., Ulleland, C.N., & Streissguth, A.P. (1973). Pattern of malformation in offspring of chronic alcoholic mothers. Lancet, 1, 12671271.CrossRefGoogle Scholar
Kinney, H., Faix, R., & Brazy, J. (1980). The fetal alcohol syndrome and neuroblastoma. Pediatrics, 66, 130132.Google Scholar
Landesman-Dwyer, S., Ragozin, A.S., & Little, R.E. (1981). Behavioral correlates of prenatal alcohol exposure: A four-year follow-up study. Neurobehavioral Toxicology and Teratology, 3, 187193.Google Scholar
Larson, E.B., Burnison, D.S., & Brown, W.S. (2002). Callosal function in multiple sclerosis: bimanual motor coordination. Cortex, 38, 201214.CrossRefGoogle Scholar
Lemoine, P., Harousseau, H., Borteryu, J.P., & Menuet, J.C. (1968). Les enfants des parents alcooliques: Anomalies observeés. À propos de 127 cas [Children of alcoholic parents: Abnormalities observed in 127 cases]. Ouest Medical, 21, 476482.Google Scholar
Marion, S.D., Kilian, S.C., Naramor, T.L., & Brown, W.S. (2003). Normal development of bimanual coordination: Visuomotor and interhemispheric contributions. Developmental Neuropsychology, 23, 399421.CrossRefGoogle Scholar
Mattson, S.N., Goodman, A.M., Caine, C., Delis, D.C., & Riley, E.P. (1999). Executive functioning in children with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 23, 18081815.CrossRefGoogle Scholar
Mattson, S.N., Gramling, L., Delis, D.C., Jones, K.L., & Riley, E.P. (1996a). Global-local processing in children prenatally exposed to alcohol. Child Neuropsychology, 2, 165175.Google Scholar
Mattson, S.N. & Riley, E.P. (1996). Brain anomalies in fetal alcohol syndrome. In E.L. Abel (Ed.), Fetal alcohol syndrome: From mechanism to prevention (pp. 5168). New York: CRC Press.
Mattson, S.N. & Riley, E.P. (1998). A review of the neurobehavioral deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcoholism: Clinical and Experimental Research, 22, 279294.CrossRefGoogle Scholar
Mattson, S.N. & Riley, E.P. (1999). Implicit and explicit memory functioning in children with heavy prenatal alcohol exposure. Journal of the International Neuropsychological Society, 5, 462471.Google Scholar
Mattson, S.N. & Riley, E.P. (2000). Parent ratings of behavior in children with heavy prenatal alcohol exposure and IQ-matched controls. Alcoholism: Clinical and Experimental Research, 24, 226231.CrossRefGoogle Scholar
Mattson, S.N., Riley, E.P., Delis, D.C., Stern, C., & Jones, K.L. (1996b). Verbal learning and memory in children with fetal alcohol syndrome. Alcoholism: Clinical and Experimental Research, 20, 810816.Google Scholar
Mattson, S.N., Riley, E.P., Gramling, L., Delis, D.C., & Jones, K.L. (1997). Heavy prenatal alcohol exposure with or without physical features of fetal alcohol syndrome leads to IQ deficits. Journal of Pediatrics, 131, 718721.CrossRefGoogle Scholar
Mattson, S.N., Riley, E.P., Gramling, L., Delis, D.C., & Jones, K.L. (1998). Neuropsychological comparison of alcohol-exposed children with or without physical features of fetal alcohol syndrome. Neuropsychology, 12, 146153.CrossRefGoogle Scholar
Mattson, S.N., Riley, E.P., Jernigan, T.L., Ehlers, C.L., Delis, D.C., Jones, K.L., Stern, C., Johnson, K.A., Hesselink, J.R., & Bellugi, U. (1992). Fetal alcohol syndrome: A case report of neuropsychological, MRI, and EEG assessment of two children. Alcoholism: Clinical and Experimental Research, 16, 10011003.Google Scholar
Mattson, S.N., Riley, E.P., Jernigan, T.L., Garcia, A., Kaneko, W.M., Ehlers, C.L., & Jones, K.L. (1994). A decrease in the size of the basal ganglia following prenatal alcohol exposure: A preliminary report. Neurotoxicology and Teratology, 16, 283289.CrossRefGoogle Scholar
Mattson, S.N., Riley, E.P., Sowell, E.R., Jernigan, T.L., Sobel, D.F., & Jones, K.L. (1996c). A decrease in the size of the basal ganglia in children with fetal alcohol syndrome. Alcoholism: Clinical and Experimental Research, 20, 10881093.Google Scholar
Mattson, S.N. & Roebuck, T.M. (2002). Acquisition and retention of verbal and nonverbal information in children with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 26, 875882.CrossRefGoogle Scholar
Moore, L.H., Brown, W.S., Markee, T.E., Theberge, D.C., & Zvi, J.C. (1995). Bimanual coordination in dyslexic adults. Neuropsychologia, 33, 781793.CrossRefGoogle Scholar
Moore, L.H., Brown, W.S., Markee, T.E., Theberge, D.C., & Zvi, J.C. (1996). Callosal transfer of finger localization information in phonologically dyslexic adults. Cortex, 32, 311322.CrossRefGoogle Scholar
Njiokiktjien, C., de Sonneville, L., & Vaal, J. (1994). Callosal size in children with learning disabilities. Behavioural Brain Research, 64, 213218.CrossRefGoogle Scholar
O'Brien, G. (1994). The behavioral and developmental consequences of corpus callosal agenesis and Aicardi Syndrome. In M. Lassonde & M.A. Jeeves (Eds.), Callosal agenesis: A natural split brain? Advances in behavioral biology (pp. 235246). New York: Plenum Press.
O'Malley, K.D. & Nanson, J. (2002). Clinical implications of a link between fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder. Canadian Journal of Psychiatry, 47, 349354.CrossRefGoogle Scholar
Oakes, K.L., Marion, S.D., Killian, S.C., Thrasher, E.D., McBurney-Rebol, K., & Brown, W.S. (2002). Gender, hormones, and bimanual coordination. Journal of the International Neuropsychological Society, 8, 280.Google Scholar
Paul, L.K., Schieffer, B., & Brown, W.S. (2004). Social processing deficits in agenesis of the corpus callosum: Narratives from the Thematic Apperception Test. Archives of Clinical Neuropsychology, 19, 215225.CrossRefGoogle Scholar
Paul, L.K., Van Lancker-Sidtis, D., Schieffer, B., Dietrich, R., & Brown, W.S. (2003). Communicative deficits in agenesis of the corpus callosum: Nonliteral language and affective prosody. Brain and Language, 85, 313324.CrossRefGoogle Scholar
Peiffer, J., Majewski, F., Fischbach, H., Bierich, J.R., & Volk, B. (1979). Alcohol embryo- and fetopathy: Neuropathology of 3 children and 3 fetuses. Journal of the Neurological Sciences, 41, 125137.CrossRefGoogle Scholar
Preilowski, B. (1972). Possible contributions of the anterior forebrain commissures to bilateral motor coordination. Neuropsychologia, 10, 267277.CrossRefGoogle Scholar
Preilowski, B. (1975). Bilateral motor interaction: Perceptual and motor performance of partial and complete “split brain” patients. In G.C. Galbraith (Ed.), Cerebral localization (pp. 115132). Berlin: Springer.
Riley, E.P., Mattson, S.N., Sowell, E.R., Jernigan, T.L., Sobel, D.F., & Jones, K.L. (1995). Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcoholism: Clinical and Experimental Research, 19, 11981202.CrossRefGoogle Scholar
Roebuck, T.M., Mattson, S.N., & Riley, E.P. (1998). A review of the neuroanatomical findings in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcoholism: Clinical and Experimental Research, 22, 339344.CrossRefGoogle Scholar
Roebuck, T.M., Mattson, S.N., & Riley, E.P. (1999). Behavioral and psychosocial profiles of alcohol-exposed children. Alcoholism: Clinical and Experimental Research, 23, 10701076.CrossRefGoogle Scholar
Roebuck, T.M., Mattson, S.N., & Riley, E.P. (2002). Interhemispheric transfer in children with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 26, 18631871.CrossRefGoogle Scholar
Roeltgen, M.G. & Roeltgen, D.P. (1989). Development of attention in normal children: A possible corpus callosum effect. Developmental Neuropsychology, 5, 127139.CrossRefGoogle Scholar
Sauerwein, H.C. & Lassonde, M. (1994). Cognitive and sensori-motor functioning in the absence of the corpus callosum: neuropsychological studies in callosal agenesis and callosotomized patients. Behavioural Brain Research, 64, 229240.CrossRefGoogle Scholar
Schieffer, B., Paul, L., & Brown, W. (2000). Deficits in complex concept formation in agenesis of the corpus callosum. Journal of the International Neuropsychological Society, 6, 164.Google Scholar
Silver, P.H. & Jeeves, M.A. (1994). Motor coordination in callosal agenesis. In M. Lassonde & M.A. Jeeves (Eds.), Callosal agenesis: A natural split brain? Advances in Behavioral Biology (pp. 207219). New York: Plenum Press.
Solursh, L.P., Margulies, A.I., Ashem, B., & Stasiak, E.A. (1965). The relationships of agenesis of the corpus callosum to perception and learning. Journal of Nervous and Mental Disease, 141, 180189.CrossRefGoogle Scholar
Sowell, E.R., Jernigan, T.L., Mattson, S.N., Riley, E.P., Sobel, D.F., & Jones, K.L. (1996). Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: Size reduction in lobules I–V. Alcoholism: Clinical and Experimental Research, 20, 3134.CrossRefGoogle Scholar
Sowell, E.R., Mattson, S.N., Thompson, P.M., Jernigan, T.L., Riley, E.P., & Toga, A.W. (2001a). Mapping callosal morphology and cognitive correlates: Effects of heavy prenatal alcohol exposure. Neurology, 57, 115.Google Scholar
Sowell, E.R., Thompson, P.M., Mattson, S.N., Tessner, K.D., Jernigan, T.L., Riley, E.P., & Toga, A.W. (2001b). Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. NeuroReport, 12, 515523.Google Scholar
Spreen, O. & Strauss, E. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York: Oxford University Press.
Steese-Seda, D., Brown, W.S., & Caetano, C. (1995). Development of visuomotor coordination in school-age children: The Bimanual Coordination Test. Developmental Neuropsychology, 11, 181199.CrossRefGoogle Scholar
Stratton, K., Howe, C., & Battaglia, F. (1996). Fetal alcohol syndrome: Diagnosis, epidemiology, prevention, and treatment. Washington, DC: National Academy Press.
Streissguth, A.P., Barr, H.M., Kogan, J., & Bookstein, F.L. (1996). Final report: Understanding the occurrence of secondary disabilities in clients with fetal alcohol syndrome (FAS) and fetal alcohol effects (FAE). Seattle, WA: University of Washington Publication Services.
Streissguth, A.P., Bookstein, F.L., Sampson, P.D., & Barr, H.M. (1989). Neurobehavioral effects of prenatal alcohol: Part III. PLS analyses of neuropsychologic tests. Neurotoxicology and Teratology, 11, 493507.CrossRefGoogle Scholar
Streissguth, A.P. & O'Malley, K. (2000). Neuropsychiatric implications and long-term consequences of fetal alcohol spectrum disorders. Seminars in Clinical Neuropsychiatry, 5, 177190.CrossRefGoogle Scholar
Swayze, V.W., 2nd, Johnson, V.P., Hanson, J.W., Piven, J., Sato, Y., Giedd, J.N., Mosnik, D., & Andreasen, N.C. (1997). Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics, 99, 232240.CrossRefGoogle Scholar
Wechsler, D. (1991). Manual for the Wechsler Intelligence Scale for Children–Third Edition. San Antonio, TX: The Psychological Corporation.
Wisniewski, K., Dambska, M., Sher, J.H., & Qazi, Q. (1983). A clinical neuropathological study of the fetal alcohol syndrome. Neuropediatrics, 14, 197201.CrossRefGoogle Scholar
Zaidel, D. & Sperry, R.W. (1974). Memory impairment after commissurotomy in man. Brain, 97, 263272.CrossRefGoogle Scholar