Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T23:19:01.813Z Has data issue: false hasContentIssue false

Prospective Memory Performance of Patients with Parkinson’s Disease Depends on Shifting Aptitude: Evidence from Cognitive Rehabilitation

Published online by Cambridge University Press:  26 June 2014

Alberto Costa*
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
Antonella Peppe
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
Francesca Serafini
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
Silvia Zabberoni
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
Francesco Barban
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
Carlo Caltagirone
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
Giovanni Augusto Carlesimo
Affiliation:
Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
*
Correspondence and reprint requests to: Alberto Costa, IRCCS Fondazione S. Lucia, Via Ardeatina, 306, 00149 Rome, Italy. E-mail: [email protected]

Abstract

This study investigated the effect of cognitive training aimed at improving shifting ability on Parkinson’s disease (PD) patients’ performance of prospective memory (PM) tasks. Using a double-blind protocol, 17 PD patients were randomly assigned to two experimental arms. In the first arm (n=9) shifting training was administered, and in the second (placebo) arm (n=8), language and respiratory exercises. Both treatments consisted of 12 sessions executed over 4 weeks. PM and shifting measures (i.e., Trail Making Test and Alternate Fluency Test) were administered at T0 (before treatment) and T1 (immediately after treatment). A mixed analysis of variance was applied to the data. To evaluate the effects of treatment, the key effect was the interaction between Group (experimental vs. placebo) and Time of Assessment (T0 vs. T1). This interaction was significant for the accuracy indices of the PM procedure (p<.05) and for the performance parameters of the shifting tasks (p≤.05). Tukey’s HSD tests showed that in all cases passing from T0 to T1 performance significantly improved in the experimental group (in all cases p≤.02) but remained unchanged in the placebo group (all p consistently>.10). The performance change passing from T0 to T1 on the Alternate Fluency test and the PM procedure was significantly correlated (p<.05). Results show that the cognitive training significantly improved PD patients’ event-based PM performance and suggest that their poor PM functioning might be related to reduced shifting abilities. (JINS, 2014, 20, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., Emre, M. (2010). Mild cognitive impairment in Parkinson disease. A multicenter pooled analysis. Neurology, 75, 10621069.CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C. H., Mendelson, M., Mock, M., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 5363.CrossRefGoogle ScholarPubMed
Bertinetto, P., Burani, C., Laudanna, A., Marconi, L., Ratti, D., Rolando, C., & Thornton, A. (2005). Corpus e Lessico di Frequenza dell'Italiano Scritto (CoLFIS). Retrieved from http://linguistica.sns.it/CoLFIS/CoLFIS_home.htm Google Scholar
Burgess, P. W., & Shallice, T. (1997). The relationship between prospective and retrospective memory: Neuropsychological evidence. In M. A. Conway (Ed.), Cognitive models of memory. Hove, UK: Psychology Press.Google Scholar
Calleo, J., Burrows, C., Levin, H., Marsh, L., Lai, E., & York, M. K. (2012). Cognitive rehabilitation for executive dysfunction in Parkinson's disease: Application and current directions. Parkinson’s Disease, 2012, 512892.Google ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hillsdale: Lawrence Erlbaum. 567 p.Google Scholar
Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 30, 123.CrossRefGoogle ScholarPubMed
Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69, 113125.CrossRefGoogle ScholarPubMed
Costa, A., Caltagirone, C., & Carlesimo, G. A. (2011). Prospective memory impairment in mild cognitive impairment: An analytical review. Neuropsychology Review, 21, 390404.CrossRefGoogle ScholarPubMed
Costa, A., Carlesimo, G. A., & Caltagirone, C. (2012). Prospective memory functioning: A new area of investigation in the clinical neuropsychology and rehabilitation of Parkinson's disease and mild cognitive impairment. Review of evidence. Neurological Sciences, 33, 965972.CrossRefGoogle ScholarPubMed
Costa, A., Peppe, A., Caltagirone, C., & Carlesimo, G. A. (2008). Prospective memory impairment in individuals with Parkinson’s disease. Neuropsychology, 22, 283292.CrossRefGoogle ScholarPubMed
Costa, A., Peppe, A., Caltagirone, C., & Carlesimo, G. A. (2013). Decreased event-based prospective memory functioning in individuals with Parkinson's disease. Journal of Neuropsychology, 7, 153163.CrossRefGoogle ScholarPubMed
Costa, A., Peppe, A., Brusa, L., Caltagirone, C., Gatto, I., & Carlesimo, G. A. (2008). Levodopa improves time-based prospective memory in Parkinson's disease. Journal of the International Neuropsychological Society, 14, 601610.CrossRefGoogle ScholarPubMed
Costa, A., Bagoj, E., Monaco, M., Zabberoni, S., De Rosa, S., Pappantonio, A. M., Carlesimo, G. A. (2014). Standardization and normative data obtained in the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurological Sciences, 35, 365372.CrossRefGoogle ScholarPubMed
Downes, J. J., Sharp, H. M., Costall, B. M., Sagar, H. J., & Howe, J. (1993). Alternating fluency in Parkinson’s disease. Brain, 116, 887902.CrossRefGoogle ScholarPubMed
Dubois, B., Burn, D., Goetz, C., Aarsland, D., Brown, R. G., Broe, G. A., Emre, M. (2007). Diagnostic procedures for Parkinson's disease dementia: Recommendations from the movement disorder society task force. Movement Disorders, 22, 23142324.CrossRefGoogle ScholarPubMed
Fish, J., Wilson, B. A., & Manly, T. (2010). The assessment and rehabilitation of prospective memory problems in people with neurological disorders: A review. Neuropsychological Rehabilitation, 20, 161179.CrossRefGoogle ScholarPubMed
Foster, E. R., McDaniel, M. A., Repovs, G., & Hershey, T. (2009). Prospective memory in Parkinson disease across laboratory and self-reported everyday performance. Neuropsychology, 23, 347358.CrossRefGoogle ScholarPubMed
Foster, E. R., Rose, N. S., McDaniel, M. A., & Rendell, P. G. (2013). Prospective memory in Parkinson disease during a virtual week: Effects of both prospective and retrospective demands. Neuropsychology, 27, 170181.CrossRefGoogle ScholarPubMed
Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., Frith, C. D., Burgess, P. W. (2006). Functional specialization within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18, 932948.CrossRefGoogle ScholarPubMed
Giovagnoli, A. R., Del Pesce, M., Mascheroni, S., Simoncelli, M., Laiacona, M., & Capitani, E. (1996). Trail Making Test: Normative values from 287 normal adults controls. Italian Journal of Neurological Sciences, 17, 305309.CrossRefGoogle ScholarPubMed
Henry, J. D., & Crawford, J. R. (2004). Verbal fluency deficits in Parkinson’s disease: A meta-analysis. Journal of the International Neuropsychological Society, 10, 608622.CrossRefGoogle ScholarPubMed
Hindle, J. V., Petrelli, A., Clare, L., & Kalbe, E. (2013). Nonpharmacological enhancement of cognitive function in Parkinson’s disease: A systematic review. Movement Disorders, 28, 10341049.CrossRefGoogle ScholarPubMed
Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinicopathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry, 55, 181184.CrossRefGoogle ScholarPubMed
Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140, 566572.CrossRefGoogle ScholarPubMed
Jenkinson, C., Fitzpatrick, R., Peto, V., Greenhall, R., & Hyman, N. (1997). The Parkinson’s disease questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. Age and Ageing, 26, 353357.CrossRefGoogle ScholarPubMed
Katai, S., Maruyama, T., Hashimoto, T., & Ikeda, S. (2003). Event based and time based prospective memory in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 74, 704709.CrossRefGoogle ScholarPubMed
Kliegel, M., Phillips, L. H., Lemke, U., & Kopp, U. A. (2005). Planning and realisation of complex intentions in patients with Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 15011505.CrossRefGoogle ScholarPubMed
Kliegel, M., Altgassen, M., Hering, A., & Rose, N. S. (2011). A process-model based approach to prospective memory impairment in Parkinson's disease. Neuropsychologia, 49, 21662177.CrossRefGoogle ScholarPubMed
Lawton, M. P., & Brody, E. M. (1969). Assessment of older people; self-maintaining and instrumental activity of daily living. The Gerontologist, 9, 179186.CrossRefGoogle Scholar
Leentjens, A. F., Dujardin, K., Marsh, L., Martinez-Martin, P., Richard, I. H., Starkstein, S. E., Goetz, C. G. (2008). Apathy and anhedonia rating scales in Parkinson’s disease: Critique and recommendations. Movement Disorders, 23, 20042014.CrossRefGoogle ScholarPubMed
Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27, 349356.CrossRefGoogle ScholarPubMed
Macdonald, P. A., & Monchi, O. (2011). Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson's disease: Implications for cognitive function. Parkinson's Disease, 2011, 572743.CrossRefGoogle ScholarPubMed
Marin, R. S., Biedrzycki, R. C., & Firinciogullari, S. (1991). Reliability and validity of the Apathy Evaluation Scale. Psychiatry Research, 38, 143162.CrossRefGoogle ScholarPubMed
McDaniel, M. A., & Einstein, G. O. (2011). The neuropsychology of prospective memory in normal aging: A componential approach. Neuropsychologia, 49, 21472155.CrossRefGoogle ScholarPubMed
McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14, S127S144.CrossRefGoogle Scholar
McDaniel, M. A., Guynn, M. J., Einstein, G. O., & Breneiser, J. (2004). Cue-focused and reflexive-associative processes in prospective memory retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30, 605614.CrossRefGoogle ScholarPubMed
Measso, G., Cavarzeran, F., Zappala, G., Lebowitz, B. D., Crook, T. H., Pirozzolo, F. J., Grigoletto, F. (1991). The Mini Mental State Examination: Normative study of a random sample of the Italian population. Developmental Neuropsychology, 9, 7785.CrossRefGoogle Scholar
Pirogovsky, E., Woods, S. P., Vincent Filoteo, J., & Gilbert, P. E. (2012). Prospective memory deficits are associated with poorer everyday functioning in Parkinson’s disease. Journal of the International Neuropsychological Society, 18, 986995.CrossRefGoogle ScholarPubMed
Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews. Neuroscience, 5, 184194.CrossRefGoogle ScholarPubMed
Raskin, S. A., Woods, S. P., Poquette, A. J., McTaggart, A. B., Sethna, J., Williams, R. C., & Tröster, A. I. (2011). A differential deficit in time- versus event-based prospective memory in Parkinson's disease. Neuropsychology, 25, 201209.CrossRefGoogle ScholarPubMed
Schmitter-Edgecombe, M., Woo, E., & Greeley, D. R. (2009). Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology, 23, 168177.CrossRefGoogle ScholarPubMed
Smith, G., Della Sala, S., Logie, R. H., & Maylor, E. A. (2000). Prospective and retrospective memory in normal ageing and dementia: A questionnaire study. Memory, 8, 311321.CrossRefGoogle ScholarPubMed
Troyer, A. K., & Murphy, K. J. (2007). Memory for intentions in amnestic mild cognitive impairment: Time- and event-based prospective memory. Journal of the International Neuropsychological Society, 13, 365369.CrossRefGoogle ScholarPubMed
Visser, M., Leentjens, A. F., Marinus, J., Stiggelbout, A. M., & van Hilten, J. J. (2006). Reliability and validity of the Beck depression inventory in patients with Parkinson's disease. Movement Disorders, 21, 668672.CrossRefGoogle ScholarPubMed