Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T07:14:23.093Z Has data issue: false hasContentIssue false

Effects of High-Definition Transcranial Direct Current Stimulation and Theta Burst Stimulation for Modulating the Posterior Parietal Cortex

Published online by Cambridge University Press:  09 August 2019

Tian Gan
Affiliation:
School of Psychiatry, University of New South Wales, Sydney 2031, NSW, Australia Black Dog Institute, Sydney 2031, NSW, Australia Department of Psychology, Zhejiang Sci-Tech University, Hangzhou 310018, China
Stevan Nikolin
Affiliation:
School of Psychiatry, University of New South Wales, Sydney 2031, NSW, Australia
Colleen K. Loo
Affiliation:
School of Psychiatry, University of New South Wales, Sydney 2031, NSW, Australia Black Dog Institute, Sydney 2031, NSW, Australia St George Hospital, Sydney 2217, NSW, Australia
Donel M. Martin*
Affiliation:
School of Psychiatry, University of New South Wales, Sydney 2031, NSW, Australia Black Dog Institute, Sydney 2031, NSW, Australia
*
Correspondence and reprint requests to: Donel Martin, Black Dog Institute, Hospital Rd., Randwick, NSW 2031 Australia. E-mail: [email protected]

Abstract

Objectives: Noninvasive brain stimulation methods, including high-definition transcranial direct current stimulation (HD-tDCS) and theta burst stimulation (TBS) have emerged as novel tools to modulate and explore brain function. However, the relative efficacy of these newer stimulation approaches for modulating cognitive functioning remains unclear. This study investigated the cognitive effects of HD-tDCS, intermittent TBS (iTBS) and prolonged continuous TBS (ProcTBS) and explored the potential of these approaches for modulating hypothesized functions of the left posterior parietal cortex (PPC). Methods: Twenty-two healthy volunteers attended four experimental sessions in a cross-over experimental design. In each session, participants either received HD-tDCS, iTBS, ProcTBS or sham, and completed cognitive tasks, including a divided attention task, a working memory maintenance task and an attention task (emotional Stroop test). Results: The results showed that compared to sham, HD-tDCS, iTBS and ProcTBS caused significantly faster response times on the emotional Stroop task. The effect size (Cohen’s d) was d = .32 for iTBS (p < .001), .21 for ProcTBS (p = .01) and .15 for HD-tDCS (p = .044). However, for the performance on the divided attention and working memory maintenance tasks, no significant effect of stimulation was found. Conclusions: The results suggest that repetitive transcranial magnetic stimulation techniques, including TBS, may have greater efficacy for modulating cognition compared with HD-tDCS, and extend existing knowledge about specific functions of the left PPC.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M., Truong, D.Q., Khadka, N., & Bikson, M. (2016). Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Physics in Medicine and Biology, 61(12), 45064521.CrossRefGoogle Scholar
Albouy, P., Weiss, A., Baillet, S., & Zatorre, R.J. (2017). Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance. Neuron, 94(1), 193206 e195.CrossRefGoogle ScholarPubMed
Anderkova, L., Pizem, D., Klobusiakova, P., Gajdos, M., Koritakova, E., & Rektorova, I. (2018). Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: An exploratory study. Neural Plasticity, 2018, 3106918.CrossRefGoogle Scholar
Antal, A., Alekseichuk, I., Bikson, M., Brockmoller, J., Brunoni, A.R., Chen, R., Cohen, L.G., Dowthwaite, G., Ellrich, J., Flöel, A., Fregni, F., George, M.S., Hamilton, R., Haueisen, J., Herrmann, C.S., Hummel, F.C., Lefaucheur, J.P., Liebetanz, D., Loo, C.K., McCaig, C.D., Miniussi, C., Miranda, P.C., Moliadze, V., Nitsche, M.A., Nowak, R., Padberg, F., Pascual-Leone, A., Poppendieck, W., Priori, A., Rossi, S., Rossini, P.M., Rothwell, J., Rueger, M.A., Ruffini, G., Schellhorn, K., Siebner, H.R., Ugawa, Y., Wexler, A., Ziemann, U., Hallett, M. & Paulus, W. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 17741809.CrossRefGoogle ScholarPubMed
Berryhill, M.E. & Martin, D. (2018). Cognitive effects of transcranial direct current stimulation in healthy and clinical populations: An overview. Journal of ECT, 34(3), e25e35.Google ScholarPubMed
Berryhill, M.E., Wencil, E.B., Coslett, H.B., & Olson, I.R. (2010). A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neuroscience Letters, 479(3), 312316.CrossRefGoogle ScholarPubMed
Cabeza, R. & Nyberg, L. (2000). Neural bases of learning and memory: functional neuroimaging evidence. Current Opinion in Neurology, 13(4), 415421.CrossRefGoogle ScholarPubMed
Capotosto, P., Baldassarre, A., Sestieri, C., Spadone, S., Romani, G.L., & Corbetta, M. (2017). Task and regions specific top-down modulation of alpha rhythms in parietal cortex. Cerebral Cortex, 27(10), 48154822.CrossRefGoogle ScholarPubMed
Chang, E. & Ro, T. (2007). Maintenance of visual stability in the human posterior parietal cortex. Journal of Cognitive Neuroscience, 19(2), 266274.CrossRefGoogle ScholarPubMed
Chung, S.W., Rogasch, N.C., Hoy, K.E., Sullivan, C.M., Cash, R.F.H., & Fitzgerald, P.B. (2018). Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Human Brain Mapping, 39(2), 783802.CrossRefGoogle ScholarPubMed
Coffman, B.A., Clark, V.P., & Parasuraman, R. (2014). Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85, 895908.CrossRefGoogle ScholarPubMed
Conforto, A.B., Z’Graggen, W.J., Kohl, A.S., Rösler, K.M., & Kaelin-Lang, A. (2004). Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clinical Neurophysiology, 115(4), 812819.CrossRefGoogle ScholarPubMed
Corbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215.CrossRefGoogle Scholar
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201207.CrossRefGoogle ScholarPubMed
Dedoncker, J., Brunoni, A.R., Baeken, C., & Vanderhasselt, M.A. (2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimulation, 9(4), 501517.CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., Insola, A., Ranieri, F., Meglio, M., Tonali, P.A. & Rothwell, J.C. (2008). The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Journal of Physiology, 586(16), 38713879.CrossRefGoogle ScholarPubMed
Fagioli, S. & Macaluso, E. (2009). Attending to multiple visual streams: Interactions between location-based and category-based attentional selection. Journal of Cognitive Neuroscience, 21(8), 16281641.CrossRefGoogle ScholarPubMed
Fierro, B., Brighina, F., Oliveri, M., Piazza, A., La Bua, V., Buffa, D., & Bisiach, E. (2000). Contralateral neglect induced by right posterior parietal rTMS in healthy subjects. Neuroreport, 11(7), 15191521.CrossRefGoogle ScholarPubMed
Filmer, H.L., Dux, P.E., & Mattingley, J.B. (2015). Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli. Neuropsychologia, 74, 120126.CrossRefGoogle ScholarPubMed
Fischer, D.B., Fried, P.J., Ruffini, G., Ripolles, O., Salvador, R., Banus, J., Ketchabaw, W.T., Santarnecchi, E., Pascual-Leone, A., & Fox, M.D. (2017). Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage, 157, 3444.CrossRefGoogle ScholarPubMed
Fitzgerald, P.B., Fountain, S., & Daskalakis, Z.J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology, 117(12), 25842596.CrossRefGoogle Scholar
Gamboa, O.L., Antal, A., Moliadze, V., & Paulus, W. (2010). Simply longer is not better: Reversal of theta burst after-effect with prolonged stimulation. Experimental Brain Research, 204(2), 181187.CrossRefGoogle Scholar
Gandiga, P.C., Hummel, F.C., & Cohen, L.G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845850.CrossRefGoogle ScholarPubMed
Gbadeyan, O., McMahon, K., Steinhauser, M., & Meinzer, M. (2016). Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: A high-definition transcranial direct current stimulation study. Journal of Neuroscience, 36(50), 1253012536.CrossRefGoogle ScholarPubMed
Giglia, G., Mattaliano, P., Puma, A., Rizzo, S., Fierro, B., & Brighina, F. (2011). Neglect-like effects induced by tDCS modulation of posterior parietal cortices in healthy subjects. Brain Stimulation, 4(4), 294299.CrossRefGoogle ScholarPubMed
Gozenman, F. & Berryhill, M.E. (2016). Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neuroscience Letters, 629, 105109.CrossRefGoogle Scholar
Gueorguieva, R. & Krystal, J.H. (2004). Move over Anova: Progress in analyzing repeated-measures data andits reflection in papers published in the archives of general psychiatry. Archives of General Psychiatry, 61(3), 310317.CrossRefGoogle Scholar
Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187199.CrossRefGoogle ScholarPubMed
Hamidi, M., Slagter, H.A., Tononi, G., & Postle, B.R. (2009). Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Frontiers in Integrative Neuroscience, 3, 14.CrossRefGoogle ScholarPubMed
Hamidi, M., Tononi, G., & Postle, B.R. (2008). Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Research, 1230, 202210.CrossRefGoogle ScholarPubMed
Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 9599.CrossRefGoogle ScholarPubMed
Hill, A.T., Rogasch, N.C., Fitzgerald, P.B., & Hoy, K.E. (2017). Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. Neuroimage, 152, 142157.CrossRefGoogle ScholarPubMed
Hill, A.T., Rogasch, N.C., Fitzgerald, P.B., & Hoy, K.E. (2018). Effects of single versus dual-site High-Definition transcranial direct current stimulation (HD-tDCS) on cortical reactivity and working memory performance in healthy subjects. Brain Stimulation, 11(5), 10331043.CrossRefGoogle ScholarPubMed
Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K.K. (2016). Effects of high-definition and conventional tDCS on response inhibition. Brain Stimulation, 9(5), 720729.CrossRefGoogle ScholarPubMed
Horvath, J.C., Forte, J.D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535550.CrossRefGoogle Scholar
Hoy, K.E., Bailey, N., Michael, M., Fitzgibbon, B., Rogasch, N.C., Saeki, T., & Fitzgerald, P.B. (2016). Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls. Cerebral Cortex, 26(12), 45634573.CrossRefGoogle ScholarPubMed
Hoy, K.E., Emonson, M.R., Arnold, S.L., Thomson, R.H., Daskalakis, Z.J., & Fitzgerald, P.B. (2013). Testing the limits: Investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia, 51(9), 17771784.CrossRefGoogle ScholarPubMed
Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P., & Rothwell, J.C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201206.CrossRefGoogle ScholarPubMed
Innocenti, I., Cappa, S.F., Feurra, M., Giovannelli, F., Santarnecchi, E., Bianco, G., Cincotta, M., & Rossi, S. (2013). TMS interference with primacy and recency mechanisms reveals bimodal episodic encoding in the human brain. Journal of Cognitive Neuroscience, 25(1), 109116.CrossRefGoogle ScholarPubMed
Jacobson, L., Goren, N., Lavidor, M., & Levy, D.A. (2012). Oppositional transcranial direct current stimulation (tDCS) of parietal substrates of attention during encoding modulates episodic memory. Brain Research, 1439, 6672.CrossRefGoogle ScholarPubMed
Jaeggi, S.M., Buschkuehl, M., Jonides, J., & Perrig, W.J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 68296833.CrossRefGoogle ScholarPubMed
Jaeggi, S.M., Buschkuehl, M., Perrig, W.J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394412.CrossRefGoogle ScholarPubMed
JASP team. (2018). JASP (Version 0.8.6)[Computer software]. http://jasp-stats.org/.Google Scholar
Jha, A.P. & McCarthy, G. (2000). The influence of memory load upon delay-interval activity in a working-memory task: An event-related functional MRI study. Journal of Cognitive Neuroscience, 12(Suppl. 2), 90105.CrossRefGoogle Scholar
Jones, K.T., Gozenman, F., & Berryhill, M.E. (2014). Enhanced long-term memory encoding after parietal neurostimulation. Experimental Brain Research, 232(12), 40434054.CrossRefGoogle ScholarPubMed
Klein, K. & Fiss, W.H. (1999). The reliability and stability of the Turner and Engle working memory task. Behavior Research Methods, Instruments, & Computers, 31(3), 429432.CrossRefGoogle ScholarPubMed
Kreisler, A., Godefroy, O., Delmaire, C., Debachy, B., Leclercq, M., Pruvo, J.P., & Leys, D. (2000). The anatomy of aphasia revisited. Neurology, 54(5), 11171123.CrossRefGoogle ScholarPubMed
Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., & Nitsche, M.A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644648.CrossRefGoogle ScholarPubMed
Lowe, C.J., Manocchio, F., Safati, A.B., & Hall, P.A. (2018). The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia, 111, 344359.CrossRefGoogle ScholarPubMed
Luber, B., Kinnunen, L.H., Rakitin, B.C., Ellsasser, R., Stern, Y., & Lisanby, S.H. (2007). Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: Frequency- and time-dependent effects. Brain Research, 1128(1), 120129.CrossRefGoogle Scholar
Luber, B. & Lisanby, S.H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage, 85, 961970.CrossRefGoogle Scholar
Martin, D.M., Alonzo, A., Ho, K.A., Player, M., Mitchell, P.B., Sachdev, P., & Loo, C.K. (2013). Continuation transcranial direct current stimulation for the prevention of relapse in major depression. Journal of Affective Disorders, 144(3), 274278.CrossRefGoogle ScholarPubMed
Martin, D.M., Liu, R., Alonzo, A., Green, M., & Loo, C.K. (2014). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: Effect of timing of stimulation. Experimental Brain Research, 232(10), 33453351.CrossRefGoogle Scholar
Martin, D.M., McClintock, S.M., Forster, J.J., Lo, T.Y., & Loo, C.K. (2017). Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depression and Anxiety, 34(11), 10291039.CrossRefGoogle ScholarPubMed
Mazzoni, N., Jacobs, C., Venuti, P., Silvanto, J., & Cattaneo, L. (2017). State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex. Journal of Neuroscience, 37(30), 72317239.CrossRefGoogle ScholarPubMed
McKinley, R.A., Bridges, N., Walters, C.M., & Nelson, J. (2012). Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage, 59(1), 129137.CrossRefGoogle Scholar
Meier, B., & Sauter, P. (2018). Boosting memory by tDCS to frontal or parietal brain regions? A study of the enactment effect shows no effects for immediate and delayed recognition. Frontiers in Psychology, 9, 876.CrossRefGoogle ScholarPubMed
Mello, E.A., Cohen, L.G., Monteiro dos Anjos, S., Conti, J., Andrade, K.N.F., Tovar Moll, F., Fernandes, C.A., Rodrigues, W. Jr, & Conforto, A.B. (2015). Increase in short-interval intracortical facilitation of the motor cortex after low-frequency repetitive magnetic stimulation of the unaffected hemisphere in the subacute phase after stroke. Neural Plasticity, 2015, 17.CrossRefGoogle ScholarPubMed
Morgan, H.M., Jackson, M.C., van Koningsbruggen, M.G., Shapiro, K.L., & Linden, D.E. (2013). Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions. Brain Stimulation, 6(2), 122129.CrossRefGoogle ScholarPubMed
Nikolin, S., Lauf, S., Loo, C.K., & Martin, D.M. (2019). Effects of high-definition transcranial direct current stimulation (HD-tDCS) of the intraparietal sulcus and dorsolateral prefrontal cortex on working memory and divided attention. Frontiers in Integrative Neuroscience, 12, 64.CrossRefGoogle ScholarPubMed
Nikolin, S., Loo, C.K., Bai, S.W., Dokos, S., & Martin, D.M. (2015). Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage, 117, 1119.CrossRefGoogle ScholarPubMed
Oberman, L., Edwards, D., Eldaief, M., & Pascual-Leone, A. (2011). Safety of theta burst transcranial magnetic stimulation: A systematic review of the literature. Journal of Clinical Neurophysiology, 28(1), 6774.CrossRefGoogle ScholarPubMed
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Parasuraman, R. & McKinley, R.A. (2014). Using noninvasive brain stimulation to accelerate learning and enhance human performance. Human Factors, 56(5), 816824.CrossRefGoogle ScholarPubMed
Paulraj, S.R., Schendel, K., Curran, B., Dronkers, N.F., & Baldo, J.V. (2018). Role of the left hemisphere in visuospatial working memory. Journal of Neurolinguistics, 48, 133141.CrossRefGoogle ScholarPubMed
Peterson, B.S., Skudlarski, P., Gatenby, J.C., Zhang, H., Anderson, A.W., & Gore, J.C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 12371258.CrossRefGoogle ScholarPubMed
Priori, A., Hallett, M., & Rothwell, J.C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2(4), 241245.CrossRefGoogle ScholarPubMed
Richardson, J., Datta, A., Dmochowski, J., Parra, L.C., & Fridriksson, J. (2015). Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia. Neurorehabilitation, 36(1), 115126.Google ScholarPubMed
Ro, T., Wallace, R., Hagedorn, J., Farne, A., & Pienkos, E. (2004). Visual enhancing of tactile perception in the posterior parietal cortex. Journal of Cognitive Neuroscience, 16(1), 2430.CrossRefGoogle ScholarPubMed
Rossi, S., Pasqualetti, P., Zito, G., Vecchio, F., Cappa, S.F., Miniussi, C., Babiloni, C., & Rossini, P.M. (2006). Prefrontal and parietal cortex in human episodic memory: An interference study by repetitive transcranial magnetic stimulation. European Journal of Neuroscience, 23(3), 793800.CrossRefGoogle ScholarPubMed
Rossini, P.M., Burke, D., Chen, R., Cohen, L.G., Daskalakis, Z., DiIorio, R., … Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clinical Neurophysiology, 126(6), 10711107.CrossRefGoogle Scholar
Roy, L.B., Sparing, R., Fink, G.R., & Hesse, M.D. (2015). Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia, 74, 96107.CrossRefGoogle ScholarPubMed
Ruff, R.M. & Allen, C.C. (1996). Ruff 2 & 7 Selective Attention Test: Professional Manual, Lutz, Florida, Psychological Assessment Resources.Google Scholar
Sack, A.T., Kohler, A., Bestmann, S., Linden, D.E., Dechent, P., Goebel, R., & Baudewig, J. (2007). Imaging the brain activity changes underlying impaired visuospatial judgments: Simultaneous FMRI, TMS, and behavioral studies. Cerebral Cortex, 17(12), 28412852.CrossRefGoogle ScholarPubMed
Salatino, A., Poncini, M., George, M.S., & Ricci, R. (2014). Hunting for right and left parietal hot spots using single-pulse TMS: Modulation of visuospatial perception during line bisection judgment in the healthy brain. Frontiers in Psychology, 5, 1238.CrossRefGoogle ScholarPubMed
Santangelo, V. & Macaluso, E. (2013). The contribution of working memory to divided attention. Human Brain Mapping, 34(1), 158175.CrossRefGoogle ScholarPubMed
Sarasso, P., Ninghetto, M., Salatino, A., Ronga, I., Bongiardina, A., Iarrobino, I., Neppi-Modona, M., & Ricci, R. (2019). Everything is (still) illuminated: Dual right cathodal-left anodal tDCS of PPC prevents fatigue on a visual detection task. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 12(1), 187189.CrossRefGoogle ScholarPubMed
Scheldrup, M., Greenwood, P.M., McKendrick, R., Strohl, J., Bikson, M., Alam, M., McKinley, R.A., & Parasuraman, R. (2014). Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask. Frontiers in Human Neuroscience, 8, 665.CrossRefGoogle ScholarPubMed
Sellaro, R., Nitsche, M.A., & Colzato, L.S. (2016). The stimulated social brain: Effects of transcranial direct current stimulation on social cognition. Annals of the New York Academy of Sciences, 1369(1), 218239.CrossRefGoogle ScholarPubMed
Shekhawat, G.S. & Vanneste, S. (2018). High-definition transcranial direct current stimulation of the dorsolateral prefrontal cortex for tinnitus modulation: A preliminary trial. Journal of neural transmission (Vienna), 125(2), 163171.CrossRefGoogle ScholarPubMed
Sliwinska, M.W., Vitello, S., & Devlin, J.T. (2014). Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course. Journal of Visualized Experiments, 89, e51735.Google Scholar
Smith, P. & Waterman, M. (2003). Processing bias for aggression words in forensic and nonforensic samples. Cognition & Emotion, 17(5), 681701.CrossRefGoogle Scholar
Strauss, G.P., Allen, D.N., Jorgensen, M.L., & Cramer, S.L. (2005). Testretest reliability of standard and emotional stroop tasks: An investigation of color-word and picture-word versions. Assessment, 12(3), 330337.CrossRefGoogle ScholarPubMed
Suppa, A., Huang, Y.Z., Funke, K., Ridding, M.C., Cheeran, B., Di Lazzaro, V., Ziemann, U., & Rothwell, J.C. (2016). Ten years of theta burst stimulation in humans: Established knowledge, unknowns and prospects. Brain Stimulation, 9(3), 323335.CrossRefGoogle ScholarPubMed
Teo, F., Hoy, K.E., Daskalakis, Z.J., & Fitzgerald, P.B. (2011). Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Frontiers in Psychiatry, 2, 45.CrossRefGoogle ScholarPubMed
Turner, M.L. & Engle, R.W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127154.CrossRefGoogle Scholar
Unsworth, N., Heitz, R.P., Schrock, J.C., & Engle, R.W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498505.CrossRefGoogle ScholarPubMed
van Wessel, B.W., Claire Verhage, M., Holland, P., Frens, M.A., & van der Geest, J.N. (2016). Cerebellar tDCS does not affect performance in the N-back task. Journal of Clinical and Experimental Neuropsychology, 38(3), 319326.CrossRefGoogle Scholar
Vossel, S., Geng, J.J., & Fink, G.R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150159.CrossRefGoogle ScholarPubMed
Wagenmakers, E.J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q.F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., de Jong, T., van den Bergh, D., Sarafoglou, A., Steingroever, H., Derks, K., Rouder, J.N., & Morey, R.D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 5876.CrossRefGoogle ScholarPubMed
Wagenmakers, E.J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., … Morey, R.D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 3557.CrossRefGoogle ScholarPubMed
Wang, J.X., Rogers, L.M., Gross, E.Z., Ryals, A.J., Dokucu, M.E., Brandstatt, K.L., Hermiller, M.S., & Voss, J.L. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 10541057.CrossRefGoogle ScholarPubMed
Warrington, E.K., & Shallice, T. (1969). The selective impairment of auditory verbal short-term memory. Brain, 92(4), 885896.CrossRefGoogle ScholarPubMed
Wechsler, D., Coalson, D.L., & Raiford, S.E. (2008). WAIS-IV: Wechsler Adult Intelligence Scale. San Antonio, TX: Pearson.Google Scholar
Xu, Y. & Chun, M.M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 9195.CrossRefGoogle ScholarPubMed
Ziemann, U. (2017). Thirty years of transcranial magnetic stimulation: Where do we stand? Experimental Brain Research, 235(4), 973984.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gan et al. supplementary material

Table S1

Download Gan et al. supplementary material(File)
File 15.9 KB