Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T08:09:13.896Z Has data issue: false hasContentIssue false

SUR LE CONTACT D’UNE HYPERSURFACE QUASI-ORDINAIRE AVEC SES HYPERSURFACES POLAIRES

Published online by Cambridge University Press:  27 January 2004

Patrick Popescu-Pampu
Affiliation:
Université Paris 7 Denis Diderot, Institute de Mathematique—UMR CNRS 7586, Equipe ‘Géométrie et dynamique’, Case 7012, 2, place Jussieu, 75251-Paris Cedex 05, France ([email protected])

Abstract

Nous appelons polynôme quasi-ordinaire de Laurent un polynôme unitaire $f(Y)$ dont les coefficients sont des séries de Laurent à plusieurs variables et tel que son discriminant soit le produit d’un monôme de Laurent et d’une série entière de terme constant non-nul. Si la dérivée $\partial f/\partial Y$ rendue unitaire est encore quasi-ordinaire de Laurent—ce qui peut être toujours obtenu par changement de base—nous montrons que l’on peut mesurer le contact de ses facteurs avec ceux de $f$ en fonction d’invariants discrets de $f$ qui mesurent le contact entre ses racines, codés sous la forme de l’arbre d’Eggers–Wall. Tous les calculs sont faits en termes de chaînes et de cochaînes supportées par cet arbre. Ce travail constitue une généralisation de résultats connus pour les germes de courbes planes.

AMS 2000 Mathematics subject classification: Primary 32S25. Secondary 14M25

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)