Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-03T19:07:03.918Z Has data issue: false hasContentIssue false

DE RHAM–WITT COHOMOLOGY FOR A PROPER AND SMOOTH MORPHISM

Published online by Cambridge University Press:  28 April 2004

Andreas Langer
Affiliation:
Universität Bielefeld, Fakultät für Mathematik, POB 100131, 33501 Bielefeld, Germany
Thomas Zink
Affiliation:
Universität Bielefeld, Fakultät für Mathematik, POB 100131, 33501 Bielefeld, Germany

Abstract

We construct a relative de Rham–Witt complex $W\varOmega^{\cdot}_{X/S}$ for a scheme $X$ over a base scheme $S$. It coincides with the complex defined by Illusie (Annls Sci. Ec. Norm. Super.12 (1979), 501–661) if $S$ is a perfect scheme of characteristic $p>0$. The hypercohomology of $W\varOmega^{\cdot}_{X/S}$ is compared to the crystalline cohomology if $X$ is smooth over $S$ and $p$ is nilpotent on $S$. We obtain the structure of a $3n$-display on the first crystalline cohomology group if $X$ is proper and smooth over $S$.

AMS 2000 Mathematics subject classification: Primary 14F30; 14F40

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)