Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T06:50:41.875Z Has data issue: false hasContentIssue false

Uniform spaces, spanier quasitopologies, and a duality for locally convex algebras

Published online by Cambridge University Press:  09 April 2009

Eduardo J. Dubuc
Affiliation:
University of Illinois at Urbana-Champaign UrbanaIllinois 61801, U.S.A.
Horacio Porta
Affiliation:
Facultad de Ciencias Exactas Universidad de Buenos Aires Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gelfand-type duality results can be obtained for locally convex algebras using a quasitopological structure on the spectrum of an algebra (as opposed to the topologies traditionally considered). In this way, the duality between (commutative, with identity) C*-algebras and compact spaces can be extended to pro-C*-algebras and separated quasitopologies. The extension is provided by a functional representation of an algebra A as the algebra of all continuous numerical functions on a quasitopological space. The first half of the paper deals with uniform spaces and quasitopologies, and has independent interest.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Arens, R. (1946), ‘A topology for spaces of transformations’, Ann. of Math. (2) 47, 480495.CrossRefGoogle Scholar
Beckenstein, E., Narici, L. and Suffel, C. (1977), Topological algebras (Notas de Matemática No. 24, North-Holland, Amsterdam).Google Scholar
Bourdaud, G. (1975/1976), ‘Sur la dualité des algèbres localement convexes’, C. R. Acad. Sci. Paris 281, 10111014; 282, 313–316.Google Scholar
Bourbaki, N. (1940), Éléments de mathématiques, Topologie générale (Hermann, Paris).Google Scholar
Bourbaki, N. (1967), Éléments de mathématiques, Thèories spectrales (Hermann, Paris).Google Scholar
Clark, A. (1969), ‘Quasitopologies and compactly generated spaces’ Ph.D. Dissertation.Google Scholar
Day, B. (1972), ‘A reflexion theorem for closed categories’, J. Pure Appl. Algebra 2, 111.CrossRefGoogle Scholar
Dixmier, J. (1964), Les C*-algèbres et leurs réprésentations (Gauthier-Villars, Paris).Google Scholar
Dubuc, E. J. (1970), Kan extensions in enriched category theory (Lecture Notes No. 145, Springer-Verlag, Berlin).CrossRefGoogle Scholar
Dubuc, E. J. (1977), ‘Concrete quasitopoi’, Proc. Durham Conference (Springer-Verlag, Berlin) (to appear).Google Scholar
Dubuc, E. J. and Porta, H. (1971), ‘Convenient categories of topological algebras and their duality theory’, J. Pure Appl. Algebra 1, 281316.CrossRefGoogle Scholar
Eilenberg, S. (1969), Spanier quasitopologies (Lecture notes, University of Paris).Google Scholar
Ginsburg, S. and Isbell, J. R. (1959), ‘Some operators on uniform spaces’, Trans. Amer. Math. Soc. 93, 145168.CrossRefGoogle Scholar
Hsia, D. (1959), ‘Seminormed Banach rings with involutions’, Izv. Akad. Nauk SSSR, Ser. Mat 23, 509528 (Russian).Google Scholar
Isbell, J. R. (1964), Uniform spaces (Math. Surveys No. 2 A.M.S., Providence).CrossRefGoogle Scholar
Kelley, J. (1955), General topology (Van Nostrand, New York).Google Scholar
Lamartin, W. F. (1977), On the foundations of k-group theory, Dissertationes Mathematicæ, CXLVI (polska. Akad. Nauk, Warszawa).Google Scholar
McCord, M. C. (1970), ‘Classifying spaces and infinite symmetric products’, Trans. Amer. Math. Soc. 146, 273298.CrossRefGoogle Scholar
MacLane, S. (1971), Categories for the working mothematician (Springer-Verlag, Berlin).Google Scholar
Michael, E. (1952), ‘Locally multiplicatively-convex topological algebras’, Amer. Math. Soc. Memoirs 11.Google Scholar
Schubert, H. (1972), Categories (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Spanier, E. (1959), ‘Infinite symmetric products, function spaces and duality’, Ann. of Math. 69, 142198.CrossRefGoogle Scholar
Spanier, E. (1962), ‘Quasitopologies’, Duke Math. J. 30, 114.Google Scholar