Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T12:28:11.883Z Has data issue: false hasContentIssue false

Some properties of quasiuniform multifunction spaces

Published online by Cambridge University Press:  09 April 2009

Jiling Cao
Affiliation:
Department of Mathematics The University of AucklandPrivate Bag 92019 Auckland 1, New Zealand
Ivan L. Reilly
Affiliation:
Department of Mathematics The University of AucklandPrivate Bag 92019 Auckland 1, New Zealand
Salvador Romaguera
Affiliation:
Escuela de Caminos Departmento de Matemática Aplicada Universidad Politécnica de Valencia46071 Valencia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to explore some properties of quasiuniform multifunction spaces. Various kinds of completeness of the quasiuniform multifunction space (YmX, UmX) are characterized in terms of suitable properties of the range space (Y, U). We also discuss the local compactness of quasiuniform multifunction spaces. By using the notion of small-set symmetry, the classic result of Hunsaker and Naimpally is extended to the quasiuniform setting.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Berthiaume, G., ‘On quasiuniformities in hyperspaces’, Proc. Amer. Math. Soc. 66 (1977), 335343.CrossRefGoogle Scholar
[2]Cao, J., ‘Quasiuniform convergence for multifunctions’, J. Math. Res. Exposition 14 (1994), 327331.Google Scholar
[3]Cao, J., ‘Answers to two questions of Papadopoulos’, Questions Answers Gen. Topology 14 (1996), 111116.Google Scholar
[4]Cao, J. and Reilly, I. L., ‘Almost quasiuniform convergence for multifunctions’, Ann. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat. 36 (1996), 5768.Google Scholar
[5]Császár, A., ‘Extensions of quasi-uniformities’, Acta Math. Hungar. 37 (1981), 121145.CrossRefGoogle Scholar
[6]Deák, J., ‘On the coincidence of some notions of quasiuniform completeness defined by filter pairs’, Studia. Sci. Math. Hungar. 26 (1991), 411413.Google Scholar
[7]Engelking, R., General topology (Warszawa, 1977).Google Scholar
[8]Fletcher, P. and Hunsaker, W. N., ‘Symmetry conditions in terms of open sets’, Topology Appl. 45 (1992), 3947.CrossRefGoogle Scholar
[9]Fletcher, P. and Lindgren, W., Quasiuniform spaces, Lecture Notes in Pure and Appl. Math. 77. (Marcel Dekker, New York, 1982).Google Scholar
[10]Hunsaker, W. N. and Naimpally, S. A., ‘Local compactness of families of continuous point-compact relations’, Pacific J. Math. 52 (1974), 101105.CrossRefGoogle Scholar
[11]Kelley, J. L., General topology (Van Nostrand, Princeton, 1955).Google Scholar
[12]Künzi, H. P. A., ‘On quasiuniform convergence and quiet spaces’, Questions Answers Gen. Topology 12 (1994), 121131.Google Scholar
[13]Künzi, H. P. A., Mršević, M., Reilly, I. L. and Vamanamurthy, M. K., ‘Convergence, precompactness and symmetry in quasiuniform spaces’, Math. Japon. 38 (1993), 239253.Google Scholar
[14]Künzi, H. P. A. and Romaguera, S., ‘Spaces of continuous functions and quasiuniform convergence’, Acta. Math. Hungar. 75 (1997), 287298.CrossRefGoogle Scholar
[15]Künzi, H. P. A. and Romaguera, S., ‘Completeness of the quasiuniformity of quasiuniform convergence’, Ann. New York Acad. Sci. 806 (1996), 231237.CrossRefGoogle Scholar
[16]Künzi, H. P. A. and Ryser, C., ‘The Bourbaki quasiuniformity’, Topology Proc. 20 (1995), 161183.Google Scholar
[17]Michael, E. A., ‘Topologies on spaces of subsets’, Trans. Amer. Math. Soc. 71 (1951), 152182.CrossRefGoogle Scholar
[18]Naimpally, S. A., ‘Function spaces of quasiuniform spaces’, Indag. Math. 27 (1966), 768771.Google Scholar
[19]Papadopoulos, B. K., ‘Quasiuniform convergence on function spaces’, Questions Answers Gen. Topology 12 (1994), 121131.Google Scholar
[20]Reilly, I. L., Subrahmanyam, P. V. and Vamanamurthy, M. K., ‘Cauchy sequences in quasi-pseudo-metric spaces’, Monatsh. Math. 93 (1982), 127140.CrossRefGoogle Scholar
[21]Romaguera, S., ‘On hereditary precompactness and completeness in quasiuniform spaces’, Acta. Math. Hungar. 73 (1996), 159178.CrossRefGoogle Scholar
[22]Seyedin, M., ‘On quasiuniform convergence’, in: General topology and its relations to modern analysis and algebra, IV (1976), pp. 425429.Google Scholar
[23]Smithson, R. E., ‘Topologies on sets of relations’, J. Natur. Sci. Math. 11 (1971), 4350.Google Scholar
[24]Smithson, R. E., ‘Uniform convergence for multifunctions’, Pacific J. Math. 39 (1971), 253259.CrossRefGoogle Scholar