Published online by Cambridge University Press: 09 April 2009
The results in this paper are consequences of an attempt many years ago to extend to loops some form of the theorem of Lyndon [12] that any nilpotent group has finitely based identities. Having failed in this, we looked for other algebras for which a similar approach might work. The algebra has to belong to a variety in which finitely generated algebras are finitely related and we must be able to bound the number of variables needed in a basis. Commutative Moufang loops, because of the extensive commutator calculus available (Bruck, [4]), provide one example (Evans, [6]). Here we give two examples from rings, namely associative rings satisfying xn = x (more generally, satisfying an identity x2 · p(x) = x) and nilpotent (non-associative) rings. We are also able to extend some results of Higman [9] on product varieties and we show that for associative rings the product of a nilpotent variety and a finitely based bariety is finitely based.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.