Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T16:21:29.304Z Has data issue: false hasContentIssue false

Small varieties of finite semigroups and extensions

Part of: Semigroups

Published online by Cambridge University Press:  09 April 2009

Jean-Eric Pin
Affiliation:
Université ParisVI et C.N.R.S. Laboratorie d'Informatique Théorique Tour 55–65 4 Place Jussieu 75230 Paris Cedex 05, France
Howard Straubing
Affiliation:
Department of Mathematics Reed CollegePortland, OregonU.S.A.97202
Denis Therien
Affiliation:
School of Computer Science McGill UniversityMontréal Québec, H3A 2K6, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We find the atoms of certain subclasses of varieties of finite semigroups and the corresponding varieties of languages. For example we give a new description of languages whose syntactic monoids are R-trivial and idempotent. We also describe the least variety containing all commutative semigroups and at least one non-commutative semigroup. Finally we extend to varieties of finite semigroups some classical results about semilattice decomposition of semigroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Berstel, J., Transductions and context-free languages (Teubner, 1979).CrossRefGoogle Scholar
[2]Brandl, R., ‘Zur Theorie der Untergruppenabgeschlossenen Formationen: Endliche Varietäten’, J. Algebra 73 (1981), 122.CrossRefGoogle Scholar
[3]Edmunds, C. C., ‘On certain finitely based varieties of semigroups’, Semigroup Forum 15 (1977), 2139.CrossRefGoogle Scholar
[4]Eilenberg, S., Automata, languages and machines, Vol. B (Academic Press, New York, 1976).Google Scholar
[5]Eilenberg, S. and Schützenberger, M. P., ‘On pseudovarieties’, Adv. in Math. 19 (1976), 413418.CrossRefGoogle Scholar
[6]Evans, T., ‘The lattice of semigroup varieties’, Semigroup Forum 2 (1971), 143.CrossRefGoogle Scholar
[7]Lallement, G., Semigroups and combinatorial applications (Wiley New York, 1979).Google Scholar
[8]Margolis, S. W. and Pin, J. E., ‘Minimal non-commutative varieties of finite monoids’, Pacific J. Math., to appear.Google Scholar
[9]Perkins, P., ‘Bases for equational theories of semigroups’, J. Algebra 11 (1968), 298314.CrossRefGoogle Scholar
[10]Pin, J. E., ‘Variétés de langages et monoïde des parties’, Semigroup Forum 20 (1980), 1147.CrossRefGoogle Scholar
[11]Pin, J. E., Variétés de langages et variétés de semigroups (Thèse, Paris, 1981).Google Scholar
[12]Pin, J. E. and Straubing, H., ‘Remarques sur le dénombrement de variétés de monoides finis’, C. R. Acad. Sci. Paris Ser. I Math. 292 (1981), 111113.Google Scholar
[13]Putcha, M. S., ‘Semilattice decomposition of semigroups’, Semigroup Forum 6 (1973), 1234.CrossRefGoogle Scholar
[14]Tamura, T., ‘Attainability of systems of identities of semigroups’, J. Algebra 3 (1966), 261276.CrossRefGoogle Scholar
[15]Tishchenko, A. V., ‘The finiteness of a base of identities for five-element monoids’, Semigroup Forum 20 (1980), 171186.CrossRefGoogle Scholar