Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T08:25:44.615Z Has data issue: false hasContentIssue false

Rigid cohomology of topological groupoids

Part of: Groupoids

Published online by Cambridge University Press:  09 April 2009

K. A. MacKenzie
Affiliation:
Department of Mathematics Monash University Clayton, Victoria 3168 Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A cohomology theory for locally trivial, locally compact topological groupoids with coefficients in vector bundles is constructed, generalizing constructions of Hochschild and Mostow (1962) for topological groups and Higgins (1971) for discrete groupoids. It is calculated to be naturally isomorphic to the cohomology of the vertex groups, and is thus independent of the twistedness of the groupoid. The second cohomology space is accordingly realized as those “rigid” extensions which essentially arise from extensions of the vertex group; the cohomological machinery now yields the unexpected result that in fact all extensions, satisfying some natural weak conditions, are rigid.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

Bott, R. (1975), “Some remarks on continuous cohomology”, Proc. Internat. Conf. on Manifolds and Related Topics (University of Tokyo Press).Google Scholar
Brown, R. and Hardy, J. P. L. (1976), “Topological groupoids I”, Mathematische Nachrichten, 71, 273286.Google Scholar
Choquet, G. (1969), Lectures on Analysis, Vols. 1, 2 (Benjamin, New York).Google Scholar
Ehresmann, C. (1959), “Catégories topologiques et catégories différentiables”, Coll. Géom. diff. Globales, pp. 137150 (Bruxelles (1958)).Google Scholar
Hardy, J. P. L. (1971), “Topological groupoids” (M.A. thesis, University of Wales).Google Scholar
Higgins, P. J. (1971), Categories and Groupoids (van Nostrand, Princeton, N.J.).Google Scholar
Hochschild, G. and Mostow, G. D. (1962), “Cohomology of Lie groups”, Illinois J. Math. 6, 367401.Google Scholar
Lang, S. (1966), Rapport sur la Cohomologie des groupes (Benjamin, New York).Google Scholar
Lang, S. (1975), Differential Manifolds (Addison-Wesley, Reading, Mass.).Google Scholar
MacLane, S. (1963), Homology (Springer-Verlag, New York).Google Scholar
Moore, C. C. (1976), “Group extensions and cohomology for locally compact groups III, IV”, Trans. Amer. Math. Soc. 221, 158.Google Scholar
Pradines, J. (1968), “Troisiéme théorème de Lie pour les groupoides différentiables”, Compt. Rend. Acad. Sci. (Paris) 267, A21-A23.Google Scholar
Seda, A. K. (1975), “An extension theorem for transformation groupoids”, Proc. Royal Irish Acad. 75(A), 255262.Google Scholar
Stasheff, J. D. (1978), Survey article in Bull. Amer. Math. Soc. (to appear).Google Scholar