Published online by Cambridge University Press: 09 April 2009
Random Fourier series are studied for a class of compact abelian hypergroups. The randomizing factors are assumed to be independent and uniformly subgaussian. In the presence of a natural teachnical hypothesis, an entropy condition of Dudley is shown to be sufficient for almost sure continuity. The classical results on almost sure membership in Lp, where p < ∞, are generalized to this setting. As an application, it is shown that a simple condition on the dual object implies that the de Leeuw-Kahane-Katznelson phenomenon occurs. Another application is the analogue of a classical sufficient condition for almost sure continuity. Examples illustrating the general theory are given for the hypergroup of conjugacy classes of SU(2) and for a class of compact countable hypergroups.