Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T20:48:04.811Z Has data issue: false hasContentIssue false

Random Fourier series on compact abelian hypergroups

Published online by Cambridge University Press:  09 April 2009

John J. F. Fournier
Affiliation:
Department of Mathematics University of British ColumbiaVancouver, CanadaV6T 1Y4
Kenneth A. Ross
Affiliation:
Department of Mathematics University of OregonEugene, Oregeon 97403, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Random Fourier series are studied for a class of compact abelian hypergroups. The randomizing factors are assumed to be independent and uniformly subgaussian. In the presence of a natural teachnical hypothesis, an entropy condition of Dudley is shown to be sufficient for almost sure continuity. The classical results on almost sure membership in Lp, where p < ∞, are generalized to this setting. As an application, it is shown that a simple condition on the dual object implies that the de Leeuw-Kahane-Katznelson phenomenon occurs. Another application is the analogue of a classical sufficient condition for almost sure continuity. Examples illustrating the general theory are given for the hypergroup of conjugacy classes of SU(2) and for a class of compact countable hypergroups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Bennett, Colin (1975), ‘Banach function spaces and interpolation methods III. Hausdorff-Young estimates’, J. Approximation Theory 13, 267275.CrossRefGoogle Scholar
[2]Bočkarev, S. V. (1978), ‘A method of averaging in the theory of orthogonal series and some problems in the theory of bases’, Trudy. Mat. Inst. Steklov 146, 186Google Scholar
(translated as Proc. Steklov Inst. Math. 3 (1980), 192).Google Scholar
[3]Bonami, Aline (1970), ‘Etude des coefficients de Fourier des fonctions de Lp(G)’, Ann. Inst. Fourier (Grenoble) 20, fasc. 2, 335402.CrossRefGoogle Scholar
[4]Caveny, D. J. (1969), ‘Absolute convergence factors for Hp series’, Canad. J. Math. 21, 187195.CrossRefGoogle Scholar
[5]Chilana, Ajit Kaur and Ross, Kenneth A. (1978), ‘Spectral synthesis in hypergroups’, Pacific J. Math. 76, 313328.CrossRefGoogle Scholar
[6]Clerc, J. L. (1976), ‘Localisation des sommes de Riesz sur un groupe de Lie compact’, Studia Math. 55, 2126.Google Scholar
[7]de Leeuw, Karel, Kahane, Jean-Pierre and Katznelson, Yitzhak (1977), “Sur les coefficients de Fourier des fonctions continues’, C. R. Acad. Sci. Paris 285, 10011003.Google Scholar
[8]Dooley, A. H. (1979), ‘Norms of characters and lacunarity for compact Lie groups’, J. Functional Analysis 32, 254267.Google Scholar
[9]Dooley, A. H. (1980), ‘Random series for central functions on compact Lie groups’, Illinios J. Math. 24, 544553.Google Scholar
[10]Dudley, R. M. (1967), ‘The sizes of compact subsets of Hilbert space and continuity of Gaussian processes’, J. Functional Analysis 1, 290330.CrossRefGoogle Scholar
[11]Dudley, R. M. (1973), ‘Sample functions of the Gaussian process’, Ann. of Probability 1, 66103.Google Scholar
[12]Dunkl, Charles F. (1973), ‘The measure algebra of a locally compact hypergroup’, Trans. Amer. Math. Soc. 179, 331348.CrossRefGoogle Scholar
[13]Dunkl, Charles F. and Ramirez, Donald E. (1975), ‘A family of countable compact p *-hypergroups’, Trans. Amer. Math. Soc. 202, 339356.Google Scholar
[14]Edwards, R. E. (1965), ‘Changing signs of Fourier coefficients’, Pacific J. Math. 15, 463475.Google Scholar
[15]Giulini, Saverio, Soardi, Paolo M. and Travaglini, Giancarlo (1981), ‘Norms of characters and Fourier series on compact Lie groups’, Rend. Circ. Mat. Palermo, II. Ser., Suppl. 1, 171173.Google Scholar
[16]Hartman, Klaus, Henrichs, Rolf Wim, and Lasser, Rupert (1979), ‘Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups’, Monatsh. Math. 88, 229238.CrossRefGoogle Scholar
[17]Hewitt, Edwin and Ross, Kenneth A. (1970), Abstract harmonic analysis II (Springer-Verlag, New York, Heidelberg, Berlin).Google Scholar
[18]Hoffman-Jorgensen, J. (1974), ‘Sums of independent Banach space valued random variables’, Studia Math. 52, 159186.Google Scholar
[19]Jain, Naresh C. and Marcus, Michael B., ‘Continuity of subgaussian processes’, Advances in probability 4, pp. 81196 (Marcel Dekker Inc., New York).Google Scholar
[20]Jewett, Robert I. (1975), ‘Spaces with an abstract convolution of measures’, Advances in Math. 18, 1101.Google Scholar
[21]Kahane, Jean-Pierre (1960), ‘Propriétés locales des fonctions à séries de Fourier aléatories’, Studia Math. 19, 125.CrossRefGoogle Scholar
[22]Kahane, Jean-Pierre (1968), Some random series of functions (Heath Mathematical monographs, Raytheon Educations Co.).Google Scholar
[23]Kawata, Tatsuo (1972), Fourier analysis in probability theory (Academic Press, New York, London).Google Scholar
[24]Kizlyakov, S. V. (1981), ‘Fourier coefficients of boundary values of analytic functions’, Trudy Mat. 155, 7794Google Scholar
(translated as Proc. Steklov Inst. Math. (1983), 7591).Google Scholar
[25]López, Jorge M. and Ross, Kenneth A. (1975), Sidon sets (Marcel Dekker, Inc. New York).Google Scholar
[26]Mahmudov, A. S. (1965), ‘On Fourier and Taylor coefficients of continuous functions III’, Some questions of functional analysis and its applications. Izdat. Akad. Azerbaidzan SSR (Baku), 103117.Google Scholar
[27]Marcus, Michael B. (1973), ‘Continuity of Gaussian processes and random Fourier series’, Ann. of Probability 1, 968981.Google Scholar
[28]Marcus, Michael B. and Pisier, Gilles (1980), Random Fourier series with applications to harmonic analysis (Ann. of Math. Studies, 101, Princeton University Press, 1981).Google Scholar
[29]Mayer, R. A. (1967), ‘Summation of Fourier series on compact groups’, Amer. J. Math. 89, 661692.CrossRefGoogle Scholar
[30]Orlicz, W. (1933), ‘Über unbedingte Konvergenz in Funktionenrämen I’, Studia Math. 4, 3337.CrossRefGoogle Scholar
[31]Ørno, Peter (1976), ‘A note on unconditionally converging series in Lp’, Proc. Amer. Math. Soc. 59, 252254.Google Scholar
[32]Paley, R. E. A. C. and Zygmund, A. (1930), ‘On some series of functions (1)’, Proc. Cambridge Philos. Soc. 26, 337357.Google Scholar
[33]Price, J. F. (1975), ‘On local central lacunary sets for compact Lie groups’, Monatsh. Math. 80, 201204.Google Scholar
[34]Ragozin, David L. (1976), ‘Approximation theory, absolute convergence, and smoothness of random Fourier series on compact Lie groups’, Math. Ann. 219, 111.CrossRefGoogle Scholar
[35]Rider, Daniel (1972a), ‘Central lacunary sets’, Monatsh. Math. 76, 328338.Google Scholar
[36]Rider, Daniel (1972b), ‘Norms of characters and central Λp sets for U(n)’, Conference on harmonic analysis, pp. 287294. (Lecture Notes in Mathematics 226, Springer-Verlag, Berlin).Google Scholar
[37]Rider, Daniel (1977), ‘Random Fourier series’, Ist. Naz. di alta Mat. Symposia Math. 22, 93106.Google Scholar
[38]Ross, Kenneth A. (1977), ‘Hypergroups and centers of measure algebras’, Ist. Naz. di alta Mat. Symposia Math. 22, 189203.Google Scholar
[39]Salem, R. and Zygmund, A. (1954), ‘Some properties of trigonometric series whose terms have random signs’, Acta Math. 91, 245301. (Also available in Salem's Complete Works, pp. 501–557.)Google Scholar
[40]Vrem, Richard C. (1978), ‘Lacunarity on compact hypergroups’, Math. Z. 164, 93104.CrossRefGoogle Scholar
[41]Vrem, Richard C. (1979), ‘Harmonic analysis on compact hypergroups’, Pacific J. Math. 85, 239251.CrossRefGoogle Scholar