Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T09:23:19.311Z Has data issue: false hasContentIssue false

On the characterisation of Asplund spaces

Published online by Cambridge University Press:  09 April 2009

J. R. Giles
Affiliation:
University of Newcastle, Newcastle, N.S.W. 2308, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Banach space is an Asplund space if every continuous convex function on an open convex subset is Fréchet differentiable on a dense G8 subset of its domain. The recent research on the Radon-Nikodým property in Banach spaces has revealed that a Banach space is an Asplund space if and only if every separable subspace has separable dual. It would appear that there is a case for providing a more direct proof of this characterisation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

Asplund, E. (1968), ‘Fréchet differentiability of convex functions’, Acta Math. 121, 3147.CrossRefGoogle Scholar
Choquet, G. (1969), Lectures on analysis, vol. 1 (Benjamin, New York).Google Scholar
Davis, W. J. and Johnson, W. B. (1973), ‘A renorming of nonreflexive Banach spaces’, Proc. Amer. Math. Soc. 37, 486487.CrossRefGoogle Scholar
Diestel, J. and Uhl, J. J. (1977), Vector measures, Math. Surveys No. 15 (Amer. Math. Soc., Providence, R. I.).CrossRefGoogle Scholar
Ekeland, I. (1974), ‘On the variational principle’, J. Math. Anal. Appl. 47, 324353.CrossRefGoogle Scholar
Ekeland, I. (1979), ‘Nonconvex minimization problems’, Bull. Amer. Math. Soc. (N.S.) 1, 443474.CrossRefGoogle Scholar
Ekeland, I. and Lebourg, G. (1976), ‘Generic Fréchet-differentiability and perturbed optimisation problems in Banach spaces’, Trans. Amer. Math. Soc. 224, 193216.Google Scholar
Fitzpatrick, S. P. (1977), ‘Continuity of nonlinear monotone operators’, Proc. Amer. Math. Soc. 62, 111116.CrossRefGoogle Scholar
Kenderov, P. S. (1974), ‘The set-valued monotone mappings are almost everywhere single-valued’, C. R. Acad. Bulgare Sci. 27, 11731175.Google Scholar
Kenderov, P. S. (1977), ‘Monotone operators in Asplund spaces’, C. R. Acad. Bulgare Sci. 30, 963964.Google Scholar
Leach, E. B. and Whitfield, J. H. M. (1972), ‘Differentiable functions and rough norms on Banach spaces’, Proc. Amer. Math. Soc. 33, 120126.CrossRefGoogle Scholar
Mazur, S. (1933), ‘Über konvexe Mengen in linearen normierten Räumen’, Studia Math. 4, 7084.CrossRefGoogle Scholar
Namioka, I. and Phelps, R. R. (1975), ‘Banach spaces which are Asplund spaces’, Duke Math. J. 42, 735749.CrossRefGoogle Scholar
Phelps, R. R. (1978), Differentiability of convex functions on Banach spaces (Lectures Notes, University of London).Google Scholar
Stegall, C. (1975), ‘The Radon-Nikodým property in conjugate Banach spaces’, Trans. Amer. Math. Soc. 206, 213223.CrossRefGoogle Scholar
Stegall, C. (1978), ‘The duality between Asplund spaces and spaces with the Radon-Nikodým property’, Israel J. Math. 29, 408412.CrossRefGoogle Scholar