In the past a number of papers have appeared which give representations of abstract lattices as rings of sets of various kinds. We refer particularly to authors who have given necessary and sufficient conditions for an abstract lattice to be lattice isomorphic to a complete ring of sets, to the lattice of all closed sets of a topological space, or to the lattice of all open sets of a topological space. Most papers on these subjects give the conditions in terms of special elements of the lattice. We thus have completely join-irreducible elements — G. N. Raney [7]; join prime, completely join prime, and supercompact elements — V. K. Balachandran [1], [2]; N-sub-irreducible elements — J. R. Büchi [5]; and lattice bisectors — P. D. Finch [6]. Also meet-irreducible and completely meet-irreducible dual ideals play a part in some representations of G. Birkhoff & 0. Frink [4].